cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213861 First occurrence of n in A213859.

Original entry on oeis.org

2, 0, 1, 3, 4, 2949, 8, 11, 12, 15, 17, 115, 20, 7863275, 24, 27, 16, 73, 32, 35, 25, 39, 33, 103, 38, 48589961800007, 228, 51, 119, 97, 56, 59, 47, 323, 52, 581, 69, 71, 43, 2277, 77, 17509, 80, 75, 84, 87, 68, 133, 92, 95, 2209, 99, 53, 29363, 104, 107, 6848, 111, 2585, 3241, 116, 449, 120, 7847, 78, 1111, 129, 173, 132, 135, 137, 5340185
Offset: 0

Views

Author

Alex Ratushnyak, Jun 22 2012

Keywords

Examples

			Smallest n such that A213859(n) = 7 is 11, so a(7) = 11.
		

Crossrefs

Programs

  • Mathematica
    nn = 25; t = Table[-1, {nn}]; Do[p = PowerMod[2, n, n + 2]; If[0 <= p <= nn && t[[p + 1]] == -1, t[[p + 1]] = n], {n, 0, 10^7}]; t (* T. D. Noe, Jun 26 2012 *)

Formula

a(n) = smallest k>n such that 2^k == n (mod k+2).

Extensions

a(26)-a(50) from T. D. Noe, Jun 26 2012
Terms a(25) and a(51) onward from Max Alekseyev, Feb 01 2014

A106262 An invertible triangle of remainders of 2^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 2, 1, 0, 1, 0, 4, 2, 1, 0, 2, 0, 3, 4, 2, 1, 0, 1, 0, 1, 2, 4, 2, 1, 0, 2, 0, 2, 4, 1, 4, 2, 1, 0, 1, 0, 4, 2, 2, 0, 4, 2, 1, 0, 2, 0, 3, 4, 4, 0, 8, 4, 2, 1, 0, 1, 0, 1, 2, 1, 0, 7, 8, 4, 2, 1, 0, 2, 0, 2, 4, 2, 0, 5, 6, 8, 4, 2, 1, 0, 1, 0, 4, 2, 4, 0, 1, 2, 5, 8, 4, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2, 1;
  0, 1, 2, 1;
  0, 2, 0, 2, 1;
  0, 1, 0, 4, 2, 1;
  0, 2, 0, 3, 4, 2, 1;
  0, 1, 0, 1, 2, 4, 2, 1;
  0, 2, 0, 2, 4, 1, 4, 2, 1;
  0, 1, 0, 4, 2, 2, 0, 4, 2, 1;
		

Crossrefs

Cf. A106263 (row sums), A106264 (diagonal sums).

Programs

  • Magma
    [Modexp(2, n-k, k+2): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 10 2023
    
  • Mathematica
    Table[PowerMod[2, n-k, k+2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
  • SageMath
    flatten([[power_mod(2,n-k,k+2) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jan 10 2023

Formula

T(n, k) = 2^(n-k) mod (k+2).
Sum_{k=0..n} T(n, k) = A106263(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106264(n) (diagonal sums).
From G. C. Greubel, Jan 10 2023: (Start)
T(n, 0) = A000007(n).
T(n, 1) = A000034(n+1).
T(2*n, n) = A213859(n).
T(2*n, n-1) = A015910(n+1).
T(2*n, n+1) = A294390(n+3).
T(2*n+1, n-1) = A112983(n+1).
T(2*n+1, n+1) = A294389(n+3).
T(2*n-1, n-1) = A062173(n+1). (End)

A212844 a(n) = 2^(n+2) mod n.

Original entry on oeis.org

0, 0, 2, 0, 3, 4, 1, 0, 5, 6, 8, 4, 8, 2, 2, 0, 8, 4, 8, 4, 11, 16, 8, 16, 3, 16, 23, 8, 8, 16, 8, 0, 32, 16, 2, 4, 8, 16, 32, 24, 8, 4, 8, 20, 23, 16, 8, 16, 22, 46, 32, 12, 8, 4, 7, 16, 32, 16, 8, 4, 8, 16, 32, 0, 63, 58, 8, 64, 32, 36, 8, 40, 8, 16, 47
Offset: 1

Views

Author

Alex Ratushnyak, Jul 22 2012

Keywords

Comments

Also a(n) = x^x mod (x-2), where x = n+2.
Indices of 0's: 2^k, k>=0.
Indices of 1's: 7, 511, 713, 11023, 15553, 43873, 81079, 95263, 323593, 628153, 2275183, 6520633, 6955513, 7947583, 10817233, 12627943, 14223823, 15346303, 19852423, 27923663, 28529473, ...
Conjecture: every integer k >= 0 appears in a(n) at least once.
Each number below 69 appears at least once. Some large first occurrences: a(39806401) = 25, a(259274569) = 33, a(10571927) = 55, a(18039353) = 81. - Charles R Greathouse IV, Jul 21 2015

Examples

			a(3) = 2^5 mod 3 = 32 mod 3 = 2.
		

Crossrefs

Programs

  • Maple
    A212844 := proc(n)
        modp( 2&^ (n+2),n) ;
    end proc: # R. J. Mathar, Jul 24 2012
  • Mathematica
    Table[PowerMod[2, n+2, n], {n, 79}] (* Alonso del Arte, Jul 22 2012 *)
  • PARI
    A212844(n)=lift(Mod(2,n)^(n+2)) \\ M. F. Hasler, Jul 23 2012
  • Python
    for n in range(1,99):
        print(2**(n+2) % n, end=',')
    

Formula

a(n) = 2^(n+2) mod n.

A294389 a(n) = 2^(n-3) mod n, for n >= 3.

Original entry on oeis.org

1, 2, 4, 2, 2, 0, 1, 8, 3, 8, 10, 4, 1, 0, 13, 8, 5, 12, 1, 6, 6, 8, 4, 20, 10, 16, 22, 8, 8, 0, 1, 26, 11, 8, 28, 10, 1, 32, 31, 8, 11, 24, 19, 12, 12, 32, 16, 28, 1, 28, 40, 44, 26, 32, 1, 44, 15, 32, 46, 16, 1, 0, 4, 8, 17, 36, 1, 58, 18, 8, 55, 56, 46, 40, 60, 8, 20, 32, 10, 62, 21, 8, 4, 22
Offset: 3

Views

Author

Enrique Navarrete, Oct 29 2017

Keywords

Comments

Every nonnegative integer seems to appear in the sequence, and every integer seems to appear in the sequence of first differences (see link).
For all 3 <= n < 10^9, a(n) != 7. - Robert G. Wilson v, Nov 30 2017

Crossrefs

Programs

  • Magma
    [Modexp(2,(n-3),n): n in [3..100]]; // G. C. Greubel, Jan 11 2023
    
  • Mathematica
    Array[PowerMod[2, # - 3, #] &, 80, 3] (* Robert G. Wilson v, Nov 30 2017 *)
  • SageMath
    [power_mod(2,(n-3),n) for n in range(3,101)] # G. C. Greubel, Jan 11 2023

Extensions

More terms from Robert G. Wilson v, Nov 30 2017
Showing 1-4 of 4 results.