A106567 a(n) = 5*a(n-1) + 4*a(n-2), with a(0) = 4, a(1) = 4.
0, 4, 20, 116, 660, 3764, 21460, 122356, 697620, 3977524, 22678100, 129300596, 737215380, 4203279284, 23965257940, 136639406836, 779058065940, 4441847957044, 25325472048980, 144394752073076, 823275648561300, 4693957251098804, 26762888849739220
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,4).
Crossrefs
Cf. A015537.
Programs
-
Magma
I:=[0,4]; [n le 2 select I[n] else 5*Self(n-1) +4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2018
-
Mathematica
CoefficientList[Series[4*x/(1-5*x-4*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 22 2018 *) LinearRecurrence[{5,4},{0,4},30] (* Harvey P. Dale, Jan 19 2025 *)
-
PARI
a(n) = (([0,4; 1,5]^n)*[0,1]~)[1]; \\ Michel Marcus, Mar 22 2018
-
Sage
def A106567_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 4*x/(1-5*x-4*x^2) ).list() A106567_list(30) # G. C. Greubel, Sep 06 2021
Formula
a(n) = 4*A015537(n).
From Chai Wah Wu, Mar 21 2018: (Start)
a(n) = 5*a(n-1) + 4*a(n-2) for n > 1.
G.f.: 4*x/(1 - 5*x - 4*x^2). (End)
a(n) = 4*(p^n - q^n)/(p - q), where 2*p = 5 + sqrt(41), 2*q = 5 - sqrt(41). - G. C. Greubel, Sep 06 2021
Extensions
Edited by N. J. A. Sloane, Apr 30 2006
New name after Chai Wah Wu, by Bruno Berselli, Mar 22 2018