cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106611 a(n) = numerator of n/(n+10).

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 13, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 39, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 26, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 13, 33, 67, 34, 69, 7, 71, 36, 73, 37, 15, 38, 77, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n,m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 17 2019

Crossrefs

Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109051(n)/10.
Dirichlet g.f.: zeta(s-1)*(1 - 4/5^s - 1/2^s + 4/10^s).
Multiplicative with a(2^e) = 2^max(0,e-1), a(5^e) = 5^max(0,e-1), a(p^e) = p^e if p = 3 or p >= 7. (End)
From Peter Bala, Feb 17 2019: (Start)
a(n) = numerator(n/((n + 2)*(n + 5))).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, ...] is a purely periodic sequence of period 10. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 10} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 4*x^5/(1 - x^5)^2 + 4*x^10/(1 - x^10)^2.
(End)
Sum_{k=1..n} a(k) ~ (63/200) * n^2. - Amiram Eldar, Nov 25 2022