cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106612 a(n) = numerator(n/(n+11)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 11 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. A109052, A137564 (differs, e.g., for n=100).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106611 (k = 7 thru 10), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+11))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+11)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq(numer(n/(n+11)),n=0..80); # Muniru A Asiru, Feb 19 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+11)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1},{0,1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,19,20,21},80] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+11))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,11)/11 for n in range(0, 54)] # Zerinvary Lajos, Jun 09 2009
    

Formula

G.f.: x/(1-x)^2 - 10*x^11/(1-x^11)^2. - Paul D. Hanna, Jul 27 2005
a(n) = lcm(n,11)/11.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109052(n)/11.
Dirichlet g.f.: zeta(s-1)*(1-10/11^s). (End)
a(n) = 2*a(n-11) - a(n-22). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(11^e) = 11^(e-1), and a(p^e) = p^e if p != 11.
Sum_{k=1..n} a(k) ~ (111/242) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 21*log(2)/11. - Amiram Eldar, Sep 08 2023

A109051 a(n) = lcm(n,10).

Original entry on oeis.org

0, 10, 10, 30, 20, 10, 30, 70, 40, 90, 10, 110, 60, 130, 70, 30, 80, 170, 90, 190, 20, 210, 110, 230, 120, 50, 130, 270, 140, 290, 30, 310, 160, 330, 170, 70, 180, 370, 190, 390, 40, 410, 210, 430, 220, 90, 230, 470, 240, 490, 50, 510, 260, 530, 270, 110, 280
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [Lcm(n,10): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    q:= [seq(10/igcd(i,10),i=1..10)]:
    [0,seq(seq((10*i+j)*q[j],j=1..10),i=0..10)]; # Robert Israel, Feb 23 2016
  • Mathematica
    a[n_] := LCM[n, 10]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *)
  • PARI
    a(n) = lcm(n, 10); \\ Michel Marcus, Feb 23 2016
  • Sage
    [lcm(n,10)for n in range(0, 57)] # Zerinvary Lajos, Jun 07 2009
    

Formula

a(n) = n*10/gcd(n, 10).
a(n) = 10*n/A109013(n) = 10*A106611(n). - R. J. Mathar, Apr 18 2011
G.f.: 10*x*(1 +x +3*x^2 +2*x^3 +x^4 +3*x^5 +7*x^6 +4*x^7 +9*x^8 +x^9 +9*x^10 +4*x^11 +7*x^12 +3*x^13 +x^14 +2*x^15 +3*x^16 +x^17 +x^18)/(1 -x^10)^2. - Robert Israel, Feb 23 2016
Sum_{k=1..n} a(k) ~ (63/20) * n^2. - Amiram Eldar, Nov 26 2022

A367824 Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367727.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the numerators begins:
  1, -1, -1, -1, -1, -1, -1, -1, ...
  1,  0, -1, -1, -3, -2, -5, -3, ...
  1,  1,  0, -1, -1, -3, -1, -5, ...
  1,  1,  1,  0, -1, -1, -1, -2, ...
  1,  3,  1,  1,  0, -1, -1, -3, ...
  1,  2,  3,  1,  1,  0, -1, -1, ...
  1,  5,  1,  1,  1,  1,  0, -1, ...
  1,  3,  5,  2,  3,  1,  1,  0, ...
  ...
		

Crossrefs

Cf. A367825 (denominator), A367826 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.

A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 3, 1, 3, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 4, 6, 12, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367728.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the denominators begins:
  1, 1, 1, 1,  1,  1,  1,  1, ...
  1, 1, 3, 2,  5,  3,  7,  4, ...
  1, 3, 1, 5,  3,  7,  2,  9, ...
  1, 2, 5, 1,  7,  4,  3,  5, ...
  1, 5, 3, 7,  1,  9,  5, 11, ...
  1, 3, 7, 4,  9,  1, 11,  6, ...
  1, 7, 2, 3,  5, 11,  1, 13, ...
  1, 4, 9, 5, 11,  6, 13,  1, ...
  ...
		

Crossrefs

Cf. A367824 (numerator), A367827 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(1, n) = A026741(n+1).
A(2, n) = A060819(n+2).
A(3, n) = A060789(n+3).
A(4, n) = A106609(n+4).
A(5, n) = A106611(n+5).
A(6, n) = A051724(n+6).
A(7, n) = A106615(n+7).
A(8, n) = A106617(n+8) = A231190(n+16).
A(9, n) = A106619(n+9).
A(10, n) = A106612(n+10).

A373917 Triangle read by rows: T(n,k) = k*10 mod n, with n >= 1, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 4, 2, 0, 3, 6, 2, 5, 1, 4, 0, 2, 4, 6, 0, 2, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 8, 6, 4, 2, 0, 10, 8, 6, 4, 2, 0, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3
Offset: 1

Views

Author

Paolo Xausa, Jun 26 2024

Keywords

Comments

Each row n encodes a "division graph" used to determine m mod n (where m is an arbitrary nonnegative integer), using the method described in the Numberphile link (see also example).

Examples

			Triangle begins:
  n\k| 0  1  2  3  4  5  6  7  8  9
  ---------------------------------
   1 | 0;
   2 | 0, 0;
   3 | 0, 1, 2;
   4 | 0, 2, 0, 2;
   5 | 0, 0, 0, 0, 0;
   6 | 0, 4, 2, 0, 4, 2;
   7 | 0, 3, 6, 2, 5, 1, 4;
   8 | 0, 2, 4, 6, 0, 2, 4, 6;
   9 | 0, 1, 2, 3, 4, 5, 6, 7, 8;
  10 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
  ...
Suppose m = 3714289 and you want to determine m mod 7 (the example shown in the video).
Start with the first digit of m (3) and calculate T(7,3 mod 7) = T(7,3) = 2.
Add it to the next digit of m (7) and calculate T(7,(2+7) mod 7) = T(7,2) = 6.
Add it to the next digit of m (1) and calculate T(7,(6+1) mod 7) = T(7,0) = 0.
Add it to the next digit of m (4) and calculate T(7,(0+4) mod 7) = T(7,4) = 5.
Add it to the next digit of m (2) and calculate T(7,(5+2) mod 7) = T(7,0) = 0.
Add it to the next digit of m (8) and calculate T(7,(0+8) mod 7) = T(7,1) = 3.
Add it to the final digit of m (9) and calculate (3+9) mod 7 = 5, which corresponds to 3714289 mod 7.
		

Crossrefs

Cf. A051127, A106611 (number of distinct terms in each row), A374195 (row sums).

Programs

  • Mathematica
    Table[Mod[Range[0, 10*(n-1), 10], n], {n, 15}]
  • Python
    def A373917(n,k): return(k*10%n) # John Tyler Rascoe, Jul 02 2024
Showing 1-5 of 5 results.