cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A110567 a(n) = n^(n+1) + 1.

Original entry on oeis.org

1, 2, 9, 82, 1025, 15626, 279937, 5764802, 134217729, 3486784402, 100000000001, 3138428376722, 106993205379073, 3937376385699290, 155568095557812225, 6568408355712890626, 295147905179352825857, 14063084452067724991010
Offset: 0

Views

Author

Jonathan Vos Post, Sep 12 2005

Keywords

Comments

For n >= 2, a(n) = the n-th positive integer such that a(n) (base n) has a block of exactly n consecutive zeros.
Comments from Alexander Adamchuk, Nov 12 2006 (Start)
(2n+1)^2 divides a(2n). a(2n)/(2n+1)^2 = {1,1,41,5713,1657009,826446281,633095889817,691413758034721,...} = A081215(2n).
p divides a(p-1) for prime p. a(p-1)/p = {1,3,205,39991,9090909091,8230246567621,...} = A081209(p-1) = A076951(p-1).
p^2 divides a(p-1) for an odd prime p. a(p-1)/p^2 = {1,41,5713,826446281,633095889817,1021273028302258913,1961870762757168078553, 14199269001914612973017444081,...} = A081215(p-1).
Prime p divides a((p-3)/2) for p = {13,17,19,23,37,41,43,47,61,67,71,89, 109,113,137,139,157,163,167,181,191,...}.
Prime p divides a((p-5)/4) for p = {29,41,61,89,229,241,281,349,421,509,601,641,661,701,709,769,809,821,881,...} = A107218(n) Primes of the form 4x^2+25y^2.
Prime p divides a((p-7)/6) for p = {79,109,127,151,313,421,541,601,613,751,757,787,...}.
Prime p divides a((p-9)/8) for p = {41,337,401,521,569,577,601,857,929,937,953,977,...} A subset of A007519(n) Primes of form 8n+1.
Prime p divides a((p-11)/10) for p = {41,181,331,601,761,1021,1151,1231,1801,...}.
Prime p divides a((p-13)/12) for p = {313,337,433,1621,1873,1993,2161,2677,2833,...}. (End)

Examples

			Examples illustrating the Comment:
a(2) = 9 because the first positive integer (base 2) with a block of 2 consecutive zeros is 100 (base 2) = 4, and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
a(3) = 82 because the first positive integer (base 3) with a block of 3 consecutive zeros is 1000 (base 3) = 81, the 2nd is 2000 (base 3) = 54 and the 3rd is 10001 (base 3) = 82 = 1 + 3^4.
a(4) = 1025 because the first positive integer (base 4) with a block of 4 consecutive zeros is 10000 (base 4) = 256, the 2nd is 20000 (base 4) = 512, the 3rd is 30000 (base 4) = 768 and the 4th 100001 (base 4) = 1025 = 1 + 4^5. and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
		

Crossrefs

Cf. A007778: n^(n+1); A000312: n^n; A014566: Sierpinski numbers of the first kind: n^n + 1.

Programs

  • Magma
    [n^(n+1) + 1: n in [0..25]]; // G. C. Greubel, Oct 16 2017
  • Mathematica
    Table[n^(n+1)+1,{n,0,30}] (* Harvey P. Dale, Oct 30 2015 *)
  • PARI
    for(n=0,25, print1(1 + n^(n+1), ", ")) \\ G. C. Greubel, Aug 31 2017
    

Formula

a(n) = A007778(n) + 1.
a(n) = A110567(n) for n > 1. - Georg Fischer, Oct 20 2018

Extensions

Entry revised by N. J. A. Sloane, Oct 20 2018 at the suggestion of Georg Fischer.
Showing 1-2 of 2 results.