cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A123570 Duplicate of A110567.

Original entry on oeis.org

1, 2, 9, 82, 1025, 15626, 279937, 5764802, 134217729, 3486784402, 100000000001, 3138428376722, 106993205379073, 3937376385699290, 155568095557812225, 6568408355712890626, 295147905179352825857, 14063084452067724991010
Offset: 0

Views

Author

Keywords

A342471 a(n) = Sum_{d|n} phi(d)^n.

Original entry on oeis.org

1, 2, 9, 18, 1025, 130, 279937, 65794, 10078209, 2097154, 100000000001, 16789506, 106993205379073, 156728328194, 35185445863425, 281479271743490, 295147905179352825857, 203119913861122, 708235345355337676357633, 1152923703631151106
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^n &]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^n);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n-1).
G.f.: Sum_{k>=1} (phi(k)*x)^k/(1 - (phi(k)*x)^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^n/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A342473 a(n) = Sum_{d|n} phi(d)^d.

Original entry on oeis.org

1, 2, 9, 18, 1025, 74, 279937, 65554, 10077705, 1049602, 100000000001, 16777306, 106993205379073, 78364444034, 35184372089865, 281474976776210, 295147905179352825857, 101559966746186, 708235345355337676357633, 1152921504607896594, 46005119909369701746057, 10000000000100000000002
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^# &]; Array[a, 20] (* Amiram Eldar, Mar 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^d);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n/gcd(k, n)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n/gcd(k, n) - 1).
G.f.: Sum_{k>=1} (phi(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^gcd(n,k)/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A081215 a(n) = (n^(n+1)+(-1)^n)/(n+1)^2.

Original entry on oeis.org

1, 0, 1, 5, 41, 434, 5713, 90075, 1657009, 34867844, 826446281, 21794641505, 633095889817, 20088655029078, 691413758034721, 25657845139503479, 1021273028302258913, 43404581642184336392, 1961870762757168078553
Offset: 0

Views

Author

Vladeta Jovovic, Apr 17 2003

Keywords

Comments

From Mathew Englander, Oct 19 2020: (Start)
The sum of two adjacent terms of the sequence cannot be prime.
In base n, a(n) has n-1 digits, which are (beginning from the left): n-2, 2, n-4, 4, and so on, except that if n is even the rightmost digit is 1 instead of 0. In that case, the other digits form a palindrome with every even digit from 2 to n-2 appearing twice. For example, a(14) in base 14 is c2a486684a2c1. If n is odd, then all digits from 1 to n-1 occur exactly once. For example, a(15) in base 15 is d2b496785a3c1e.
For any positive integer k, any prime p, and any positive integer h such that h*p > 2, a(h*p^k - 2) == (-1)^h * (1 - 2^(h-1)) (mod p). For example, a(7*p^k - 2) == 63 (mod p); a(10*p^k - 2) == -511 (mod p).
Suppose k and m are positive integers. If k is even, then a(k*m) == 1, a(k*m+1) == 0, and a(k*m-1) == -1 (all mod m). If k is odd, then a(k*m) == (-1)^m and a(k*m+1) == ceiling(m/2) (both mod m), while a(k*m-1) == m/2 - 1 for m even, and a(k*m-1) == 1 for m odd (mod m).
For proofs of the above, see the Englander link. (End)

Crossrefs

Programs

  • Maple
    seq((j^(j+1)+(-1)^j)/(j+1)^2, j=0..50); # Robert Israel, May 19 2016
  • Mathematica
    Array[(#^(# + 1) + (-1)^#)/(# + 1)^2 &, 19, 0] (* Michael De Vlieger, Nov 13 2020 *)
  • PARI
    a(n) = (n^(n+1)+(-1)^n)/(n+1)^2; \\ Michel Marcus, Oct 20 2020

Formula

a(n) = (-1)^n + Sum_{k=1..n} (-1)^(k+1)*(n+1)^(n-k)*C(n+1,n+2-k). - Gionata Neri, May 19 2016
E.g.f.: (Ei(1,x) - Ei(1,-LambertW(-x)))/x. - Robert Israel, May 19 2016
For n > 1, a(n) = Sum_{k=1..floor(n/2)} (n^(n-2*k) * (2*k/n + n - 2*k)). - Mathew Englander, Oct 19 2020

A110676 Number of prime factors with multiplicity of 1 + n^(n+1).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 6, 3, 5, 4, 5, 4, 9, 3, 4, 9, 3, 6, 10, 6, 7, 6, 11, 5, 11, 10, 5, 10, 8, 3, 12, 6, 10, 8, 5, 6, 13, 8, 6, 11, 6, 10, 16, 4, 4, 6, 9, 6, 11, 8, 4, 10, 10, 5, 13, 10, 7, 11, 6, 6, 21, 4, 23, 8, 6, 8, 16, 15, 7, 12, 7, 8, 19, 8, 13, 14, 5, 6, 20, 6, 10, 13, 12, 7, 9, 9, 6, 21
Offset: 1

Views

Author

Jonathan Vos Post, Sep 14 2005

Keywords

Comments

As also noticed by T. D. Noe, for odd n: 2 | a(n), for even n: (n+1)^2 | a(n). Coincidentally, a(74) includes 13 multidigit prime factors all of which end with the digit 1. There is no upper limit to this sequence, which rapidly becomes slow to compute. The derived sequences of n such that a(n) = k for any constant k > 2 do not yet appear in the OEIS. For instance, a(n) = 3 for n = 4, 5, 7, 9, 15, 18, 31, ... Is each such derived sequence finite?

Examples

			a(1) = 1 because 1+1^2 = 2 is prime (and the only such prime).
a(2) = 2 because 1 + 2^3 = 9 = 3^2 which has (with multiplicity) two prime factors.
a(3) = 2 because 1 + 3^4 = 82 = 2 * 41 (the last such semiprime?).
a(4) = 3 because 1 + 4^5 = 1025 = 5^2 * 41 which has (with multiplicity) 3 prime factors.
a(8) = 6 because 1 + 8^9 = 134217729 = 3^4 * 19 * 87211.
a(14) = 9 because 1 + 14^15 = 155568095557812225 = 3^2 * 5^2 * 61 * 71 * 101 * 811 * 1948981.
a(1000) > 52.
		

Crossrefs

Programs

  • PARI
    a(n) = bigomega(1+(n^(n+1))) \\ Georg Fischer, Jun 21 2024

Formula

a(n) = A001222(A110567(n)) = A001222(1 + A007778(n)) = A001222(1 + (n^(n+1))).
Trivially a(n) << n log n. At most n^(n+1) + 1 is of the form 2*3^k. - Charles R Greathouse IV, Jun 24 2024

Extensions

a(13) and 3 other terms corrected by Georg Fischer, Jun 21 2024

A110874 Number of prime factors of 2 + n^(n+1) counted with multiplicity.

Original entry on oeis.org

1, 2, 1, 5, 2, 2, 4, 5, 2, 5, 4, 4, 5, 3, 1, 4, 5, 3, 4, 6, 3, 8, 4, 5, 4, 4, 2, 6, 3, 6, 5, 5, 5, 6, 6, 8, 6, 6, 4, 5, 4, 6, 4, 5, 3, 8, 4, 3, 5, 5, 5, 7, 7, 11, 4, 5, 4, 13, 4, 6, 2, 5, 2, 6, 6, 5, 8, 9, 5, 9, 4, 7, 4, 4, 5, 7, 6, 7, 6, 9, 4, 9, 5, 8, 5, 8
Offset: 1

Views

Author

Jonathan Vos Post, Sep 18 2005

Keywords

Comments

Compared with A110676, number of prime factors with multiplicity of 2 + n^(n+1), this seems to have an unlimited number of primes (n = 1, 3, 15, ...) and semiprimes (n = 2, 5, 6, 9, 27, ...). Of course, n even gives n | a(n).

Examples

			a(1) = 1 because 2 + 1^2 = 3 is prime (one prime factor).
a(2) = 2 because 2 + 2^3 = 10 = 2 * 5 is semiprime (two prime factors).
a(3) = 1 because 2 + 3^4 = 83 is prime.
a(4) = 5 because 2 + 4^5 = 1026 = 2 * 3^3 * 19 has five prime factors (3 has multiplicity of 3).
a(5) = 2 because 2 + 5^6 = 15627 = 3 * 5209 is semiprime (two prime factors).
a(6) = 2 because 2 + 6^7 = 279938 = 2 * 139969 is semiprime (two prime factors).
a(15) = 1 because 2 + 15^16 = 6568408355712890627 is prime. What is the next prime?
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[2+n^(n+1)],{n,41}] (* Harvey P. Dale, Nov 08 2020 *)

Formula

a(n) = A001222(1 + A110567(n)) = A001222(2 + A007778(n)) = A001222(2 + n^(n+1)).

Extensions

More terms from Sean A. Irvine, Sep 17 2023
Showing 1-6 of 6 results.