cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A107452 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) on 4n vertices for 1<=k

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 6, 4, 5, 6, 5, 5, 7, 5, 8, 8, 7, 6, 10, 8, 8, 9, 10, 8, 13, 8, 9, 12, 10, 12, 14, 10, 11, 14, 14, 11, 17, 11, 14, 17, 13, 12, 18, 14, 16
Offset: 2

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd.
The smallest bipartite generalized Petersen graph is P(4,1)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

A107453 1 followed by repetitions of the period-4 sequence 1,1,1,2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 4

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 4 on 2n vertices for 1<=k<=floor((n-1)/2).
The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.
Also the number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 4 on 4n vertices for 1<=k= 2. A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd; it has girth 4 if and only if n = 4k or k=1.
From Tomaz Pisanski, Mar 08 2008: (Start)
The fact that the two interpretations give the same numerical values is a coincidence.
Let f(n) be the number of generalized Petersen graphs P(n,k), n = 4,5,... of girth 4. Let g(n) be the number of bipartite generalized Petersen graphs P(2n,k), n = 2,3,4,... of girth 4.
The sequences may be computed as follows: f(t) = if t = 4 then 1 else if 4|t then 2 else 1 and g(s) = if s = 2 then else if mod(s,4) = 2 then 2 else 1. It follows that f(n+2) = g(n).
The exception f(4) = g(2) = 1 does count the same object, namely, P(4,1) but for all other cases f(n+2) counts different objects that g(n). (End)
Also, Table[Denominator[(n - 1) n (n + 1)/12], {n, 100}] with 3 1's in front... - Eric W. Weisstein, Mar 04 2008
Continued fraction expansion of sqrt(8/3), if the offset is 1. - Arkadiusz Wesolowski, Aug 27 2011

Examples

			A generalized Petersen graph P(n,k) has girth 4 if and only if n = 4k or k=1.
The smallest generalized Petersen graph with girth 4 is P(4,1).
The smallest bipartite generalized Petersen graph with girth 4 is P(4,1).
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

Programs

  • Mathematica
    Join[{1},PadRight[{},104,{1,1,1,2}]] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    x='x+O('x^100); Vec(-x^4*(x^4+x^3+x^2+x+1)/((x-1)*(x+1)*(x^2+1))) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = sgn(n) + cos(Pi*n/4)^2 + (cos(Pi*n)-1)/4; a(n) = sgn(n) + floor(((n+3) mod 4)/3). - Carl R. White, Oct 15 2009
From Colin Barker, Jul 16 2013: (Start)
a(n) = (5+(-1)^n+(-i)^n+i^n)/4 for n>4, where i=sqrt(-1).
G.f.: -x^4*(x^4+x^3+x^2+x+1) / ((x-1)*(x+1)*(x^2+1)). (End)

Extensions

Edited by N. J. A. Sloane, Mar 08 2008

A107459 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 6 on 4n vertices for 1<=k

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2
Offset: 4

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd; it has girth 6 if and only if it has girth more than 4 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1)
The smallest bipartite generalized Petersen graph with girth 6 is P(8,3)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

A107454 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 5 on 2n vertices for 1<=k<=Floor[(n-1)/2].

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 5

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) has girth 5 if and only if it has girth more than 4 and (n=5k or 2n=5k or k=2 or 2k=n-1).
The smallest generalized Petersen graph with girth 5 is P(5,2)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

A107457 Triangle read by rows: row n gives number of nonisomorphic generalized Petersen graphs P(n,k) with girth 8 on n vertices for 1<=k<=floor[(n-1)/2].

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 4, 1, 4, 3, 2, 3, 4, 3, 5, 6, 7, 2, 7, 5, 8, 8, 8, 6, 8, 6, 10, 9, 11, 7, 13, 6, 12, 12, 13, 9, 15, 11, 13, 14, 16, 10, 17, 11, 17, 14, 17, 15, 21, 12, 19, 18, 18, 13, 23, 14, 22, 20, 22, 16, 26, 15, 24, 21, 25, 16, 26, 21, 26, 24
Offset: 18

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			Any generalized Petersen graph P(n,k) has girth at most 8; it has girth 8 if and only if it has girth more than 7.
The smallest generalized Petersen graph with girth 8 is P(18,5)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

Extensions

Example corrected by Greg Demand, Jan 17 2008
Typo in description corrected by Harvey P. Dale, Aug 17 2020

A107455 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 6 on n vertices for 1<=k<=Floor[(n-1)/2].

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3
Offset: 8

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) has girth 6 if and only if it has girth more than 5 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1)
The smallest generalized Petersen graph with girth 6 is P(8,3)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

A107456 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 7 on n vertices for 1<=k<=Floor[(n-1)/2].

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 0, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2, 2, 1, 2, 2, 5, 2, 2, 1, 2, 2, 2, 5, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2
Offset: 13

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) has girth 7 if and only if it has girth more than 6 and (n=7k or 2n=7*k or 3n=7k or k=4 or 4k=n+1 or 4=n-k or 4k=n-1 or 4k=2n-1 or 3k=n+2 or 3=n-2k or 3k=n-2)
The smallest generalized Petersen graph with girth 7 is P(13,5)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

Showing 1-7 of 7 results.