cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177704 Period 4: repeat [1, 1, 1, 2].

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Klaus Brockhaus, May 11 2010

Keywords

Comments

Continued fraction expansion of (3 + 2*sqrt(6))/5.
Decimal expansion of 1112/9999.
a(n) = A164115(n + 1) = (-1)^(n + 1) * A164117(n + 1) = A138191(n + 3) = A107453(n + 5).

Crossrefs

Programs

  • Magma
    &cat[ [1, 1, 1, 2]: k in [1..27] ];
    
  • Maple
    A177704:=n->floor((n+1)*5/4) - floor(n*5/4): seq(A177704(n), n=0..100); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Table[Floor[(n + 1)*5/4] - Floor[n*5/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 15 2016 *)
    LinearRecurrence[{0, 0, 0, 1}, {1, 1, 1, 2}, 100] (* Vincenzo Librandi, Jun 16 2016 *)
  • PARI
    a(n) = if(n%4==3, 2, 1) \\ Felix Fröhlich, Jun 15 2016

Formula

a(n) = (5-(-1)^n + i*i^n-i*(-i)^n)/4 where i = sqrt(-1).
a(n) = a(n-4) for n > 3; a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2.
G.f.: (1+x+x^2+2*x^3)/(1-x^4).
a(n) = 1 + (1-(-1)^n) * (1+i^(n+1))/4 where i = sqrt(-1). - Bruno Berselli, Apr 05 2011
a(n) = 5/4 - sin(Pi*n/2)/2 - (-1)^n/4. - R. J. Mathar, Oct 08 2011
a(n) = floor((n+1)*5/4) - floor(n*5/4). - Hailey R. Olafson, Jul 23 2014
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n+3) - a(n+2) = A219977(n).
Sum_{i=0..n-1} a(i) = A001068(n). (End)
E.g.f.: (-sin(x) + 3*sinh(x) + 2*cosh(x))/2. - Ilya Gutkovskiy, Jun 15 2016

A107452 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) on 4n vertices for 1<=k

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 6, 4, 5, 6, 5, 5, 7, 5, 8, 8, 7, 6, 10, 8, 8, 9, 10, 8, 13, 8, 9, 12, 10, 12, 14, 10, 11, 14, 14, 11, 17, 11, 14, 17, 13, 12, 18, 14, 16
Offset: 2

Views

Author

Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005

Keywords

Comments

The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.

Examples

			A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd.
The smallest bipartite generalized Petersen graph is P(4,1)
		

References

  • I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.

Crossrefs

A138191 Denominator of (n-1)*n*(n+1)/12.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Mar 04 2008

Keywords

Comments

Proof of 4-periodicity follows from evaluating (n+3)(n+4)(n+5)/12, subtracting (n-1)n(n+1)/12 and getting n^2+4n+5 which is an integer. - R. J. Mathar, Mar 07 2008

Examples

			0, 1/2, 2, 5, 10, 35/2, 28, 42, 60, 165/2, 110, 143, 182, ...
		

Crossrefs

Programs

  • Mathematica
    Table[(n^3-n)/12,{n,120}]//Denominator (* or *) PadRight[{},120,{1,2,1,1}] (* Harvey P. Dale, Apr 15 2019 *)
  • Python
    def A138191(n): return (1,1,2,1)[n&3] # Chai Wah Wu, Apr 25 2024

Formula

From R. J. Mathar, Mar 07 2008: (Start)
a(n) = 1 + (A000292(n-1) mod 2) = a(n-4).
O.g.f.: -1-5/(4(x-1))+1/(4(x+1))-1/(2(x^2+1)). (End)
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(p^e) = 2 if p = 2 and e = 1, and 1 otherwise.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/4^s).
Sum_{k=1..n} a(k) ~ (5/4)*n. (End)

A164115 Expansion of (1 - x^5) / ((1 - x) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Michael Somos, Aug 10 2009

Keywords

Comments

The sequence A107453 has the same terms but different offset.
Convolution inverse of A164116.
Decimal expansion of 11111/99990. - Elmo R. Oliveira, Feb 18 2024

Examples

			1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2+x^3+x^4)/(1-x^4))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^3+x^4)/(1-x^4), {x, 0, 100}], x] (* G. C. Greubel, Sep 22 2018 *)
    LinearRecurrence[{0,0,0,1},{1,1,1,1,2},120] (* or *) PadRight[{1},120,{2,1,1,1}] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    {a(n) = 2 - (n==0) - (n%4>0)}
    
  • PARI
    x='x+O('x^99); Vec((1-x^5)/((1-x)*(1-x^4))) \\ Altug Alkan, Sep 23 2018
    

Formula

Euler transform of length-5 sequence [ 1, 0, 0, 1, -1].
a(n) is multiplicative with a(2) = 1, a(2^e) = 2 if e>1, a(p^e) = 1 if p>2.
a(n) = (-1)^n * A164117(n).
a(4*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1.
a(-n) = a(n). a(n+4) = a(n) unless n=0 or n=-4.
G.f.: (1 + x + x^2 + x^3 + x^4) / ((1+x)*(1-x)*(1+x^2)).
a(n) = A138191(n+2), n>0. - R. J. Mathar, Aug 17 2009
Dirichlet g.f. (1+1/4^s)*zeta(s). - R. J. Mathar, Feb 24 2011
a(n) = (i^n + (-i)^n + (-1)^n + 5)/4 for n > 0 where i is the imaginary unit. - Bruno Berselli, Feb 25 2011
Showing 1-4 of 4 results.