cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A163141 a(n) = 5*a(n-2) for n > 2; a(1) = 4, a(2) = 5.

Original entry on oeis.org

4, 5, 20, 25, 100, 125, 500, 625, 2500, 3125, 12500, 15625, 62500, 78125, 312500, 390625, 1562500, 1953125, 7812500, 9765625, 39062500, 48828125, 195312500, 244140625, 976562500, 1220703125, 4882812500, 6103515625, 24414062500
Offset: 1

Views

Author

Klaus Brockhaus, Jul 21 2009

Keywords

Comments

Apparently the same as A133632 without initial 1.
Binomial transform is A163069, second binomial transform is A163070, third binomial transform is A163071, fourth binomial transform is A108404 without initial 1, fifth binomial transform is A163072.

Crossrefs

Programs

  • Magma
    [ n le 2 select n+3 else 5*Self(n-2): n in [1..29] ];
    
  • Mathematica
    LinearRecurrence[{0,5},{4,5},30] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    Vec(x*(4+5*x)/(1-5*x^2) + O(x^30)) \\ Jinyuan Wang, Mar 23 2020

Formula

a(n) = (5-3*(-1)^n)*5^(1/4*(2*n-1+(-1)^n))/2.
G.f.: x*(4+5*x)/(1-5*x^2).

A163071 a(n) = ((4+sqrt(5))*(3+sqrt(5))^n + (4-sqrt(5))*(3-sqrt(5))^n)/2.

Original entry on oeis.org

4, 17, 86, 448, 2344, 12272, 64256, 336448, 1761664, 9224192, 48298496, 252894208, 1324171264, 6933450752, 36304019456, 190090313728, 995325804544, 5211593572352, 27288258215936, 142883175006208, 748146017173504
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A163070. Third binomial transform of A163141. Inverse binomial transform of A108404 without initial 1.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((4+r)*(3+r)^n+(4-r)*(3-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
  • Mathematica
    LinearRecurrence[{6,-4},{4,17},40] (* Harvey P. Dale, Feb 12 2013 *)

Formula

a(n) = 6*a(n-1) - 4*a(n-2) for n > 1; a(0) = 4, a(1) = 17.
G.f.: (4-7*x)/(1-6*x+4*x^2).
a(n) = 2^(n+1) * A000032(2*n) + 5 * 2^(n-1) * A000045(2*n) = 2^(n+1) * A005248(n) + 5 * 2^(n-1) * A001906(n). - Diego Rattaggi, Aug 02 2020

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009

A228842 Binomial transform of A014448.

Original entry on oeis.org

2, 6, 28, 144, 752, 3936, 20608, 107904, 564992, 2958336, 15490048, 81106944, 424681472, 2223661056, 11643240448, 60964798464, 319215828992, 1671435780096, 8751751364608, 45824765067264, 239941584945152, 1256350449401856, 6578336356630528, 34444616342175744
Offset: 0

Views

Author

R. J. Mathar, Nov 10 2013

Keywords

Comments

The binomial transform of this sequence is 2, 8, 42, 248,... = 2*A108404(n).

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44.

Crossrefs

When divided by 2^n this becomes(essentially) A005248.

Programs

  • Mathematica
    CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Aug 26 2021 *)
    LinearRecurrence[{6,-4},{2,6},30] (* Harvey P. Dale, Jun 30 2024 *)
  • PARI
    Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ Colin Barker, Sep 21 2017

Formula

G.f.: 2*( 1-3*x ) / ( 1-6*x+4*x^2 ).
a(n) = 2*A098648(n).
From Colin Barker, Sep 21 2017: (Start)
a(n) = (3-sqrt(5))^n + (3+sqrt(5))^n.
a(n) = 6*a(n-1) - 4*a(n-2) for n>1.
(End)

A292466 Triangle read by rows: T(n,k) = 4*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = 5^m.

Original entry on oeis.org

0, 1, 1, 0, 4, 8, 5, 5, 21, 53, 0, 20, 40, 124, 336, 25, 25, 105, 265, 761, 2105, 0, 100, 200, 620, 1680, 4724, 13144, 125, 125, 525, 1325, 3805, 10525, 29421, 81997, 0, 500, 1000, 3100, 8400, 23620, 65720, 183404, 511392, 625, 625, 2625, 6625, 19025, 52625
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2017

Keywords

Examples

			First few rows are:
    0;
    1,   1;
    0,   4,   8;
    5,   5,  21,   53;
    0,  20,  40,  124,  336;
   25,  25, 105,  265,  761,  2105;
    0, 100, 200,  620, 1680,  4724, 13144;
  125, 125, 525, 1325, 3805, 10525, 29421, 81997.
--------------------------------------------------------------
The diagonal is      {0, 1,  8,  53, 336, 2105, ...} and
the next diagonal is {1, 4, 21, 124, 761, 4724, ...}.
Two sequences have the following property:
     1^2 - 5*   0^2 = 1      (= 11^0),
     4^2 - 5*   1^2 = 11     (= 11^1),
    21^2 - 5*   8^2 = 121    (= 11^2),
   124^2 - 5*  53^2 = 1331   (= 11^3),
   761^2 - 5* 336^2 = 14641  (= 11^4),
  4724^2 - 5*2105^2 = 161051 (= 11^5),
  ...
		

Crossrefs

The diagonal of the triangle is A091870.
The next diagonal of the triangle is A108404.
T(n,k) = b*T(n-1,k-1) + T(n,k-1): A292789 (b=-3), A292495 (b=-2), A117918 and A228405 (b=1), A227418 (b=2), this sequence (b=4).

Formula

T(n+1,n)^2 - 5*T(n,n)^2 = 11^n.

A163072 a(n) = ((4+sqrt(5))*(5+sqrt(5))^n + (4-sqrt(5))*(5-sqrt(5))^n)/2.

Original entry on oeis.org

4, 25, 170, 1200, 8600, 62000, 448000, 3240000, 23440000, 169600000, 1227200000, 8880000000, 64256000000, 464960000000, 3364480000000, 24345600000000, 176166400000000, 1274752000000000, 9224192000000000, 66746880000000000
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A108404 without initial 1. Fifth binomial transform of A163141.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((4+r)*(5+r)^n+(4-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
    
  • Mathematica
    LinearRecurrence[{10, -20}, {4, 25}, 30] (* G. C. Greubel, Jan 08 2018 *)
  • PARI
    x='x+O('x^30); Vec((4-15*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Jan 08 2018

Formula

a(n) = 10*a(n-1) - 20*a(n-2) for n > 1; a(0) = 4, a(1) = 25.
G.f.: (4-15*x)/(1-10*x+20*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
Showing 1-5 of 5 results.