A163141
a(n) = 5*a(n-2) for n > 2; a(1) = 4, a(2) = 5.
Original entry on oeis.org
4, 5, 20, 25, 100, 125, 500, 625, 2500, 3125, 12500, 15625, 62500, 78125, 312500, 390625, 1562500, 1953125, 7812500, 9765625, 39062500, 48828125, 195312500, 244140625, 976562500, 1220703125, 4882812500, 6103515625, 24414062500
Offset: 1
-
[ n le 2 select n+3 else 5*Self(n-2): n in [1..29] ];
-
LinearRecurrence[{0,5},{4,5},30] (* Harvey P. Dale, Dec 20 2021 *)
-
Vec(x*(4+5*x)/(1-5*x^2) + O(x^30)) \\ Jinyuan Wang, Mar 23 2020
A163071
a(n) = ((4+sqrt(5))*(3+sqrt(5))^n + (4-sqrt(5))*(3-sqrt(5))^n)/2.
Original entry on oeis.org
4, 17, 86, 448, 2344, 12272, 64256, 336448, 1761664, 9224192, 48298496, 252894208, 1324171264, 6933450752, 36304019456, 190090313728, 995325804544, 5211593572352, 27288258215936, 142883175006208, 748146017173504
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((4+r)*(3+r)^n+(4-r)*(3-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
LinearRecurrence[{6,-4},{4,17},40] (* Harvey P. Dale, Feb 12 2013 *)
Original entry on oeis.org
2, 6, 28, 144, 752, 3936, 20608, 107904, 564992, 2958336, 15490048, 81106944, 424681472, 2223661056, 11643240448, 60964798464, 319215828992, 1671435780096, 8751751364608, 45824765067264, 239941584945152, 1256350449401856, 6578336356630528, 34444616342175744
Offset: 0
- C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44.
- Colin Barker, Table of n, a(n) for n = 0..1000
- P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence B_4.
- Takao Komatsu, Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions, arXiv:2105.08277 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-4).
When divided by 2^n this becomes(essentially)
A005248.
-
CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Aug 26 2021 *)
LinearRecurrence[{6,-4},{2,6},30] (* Harvey P. Dale, Jun 30 2024 *)
-
Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ Colin Barker, Sep 21 2017
A292466
Triangle read by rows: T(n,k) = 4*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = 5^m.
Original entry on oeis.org
0, 1, 1, 0, 4, 8, 5, 5, 21, 53, 0, 20, 40, 124, 336, 25, 25, 105, 265, 761, 2105, 0, 100, 200, 620, 1680, 4724, 13144, 125, 125, 525, 1325, 3805, 10525, 29421, 81997, 0, 500, 1000, 3100, 8400, 23620, 65720, 183404, 511392, 625, 625, 2625, 6625, 19025, 52625
Offset: 0
First few rows are:
0;
1, 1;
0, 4, 8;
5, 5, 21, 53;
0, 20, 40, 124, 336;
25, 25, 105, 265, 761, 2105;
0, 100, 200, 620, 1680, 4724, 13144;
125, 125, 525, 1325, 3805, 10525, 29421, 81997.
--------------------------------------------------------------
The diagonal is {0, 1, 8, 53, 336, 2105, ...} and
the next diagonal is {1, 4, 21, 124, 761, 4724, ...}.
Two sequences have the following property:
1^2 - 5* 0^2 = 1 (= 11^0),
4^2 - 5* 1^2 = 11 (= 11^1),
21^2 - 5* 8^2 = 121 (= 11^2),
124^2 - 5* 53^2 = 1331 (= 11^3),
761^2 - 5* 336^2 = 14641 (= 11^4),
4724^2 - 5*2105^2 = 161051 (= 11^5),
...
The diagonal of the triangle is
A091870.
The next diagonal of the triangle is
A108404.
A163072
a(n) = ((4+sqrt(5))*(5+sqrt(5))^n + (4-sqrt(5))*(5-sqrt(5))^n)/2.
Original entry on oeis.org
4, 25, 170, 1200, 8600, 62000, 448000, 3240000, 23440000, 169600000, 1227200000, 8880000000, 64256000000, 464960000000, 3364480000000, 24345600000000, 176166400000000, 1274752000000000, 9224192000000000, 66746880000000000
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((4+r)*(5+r)^n+(4-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
LinearRecurrence[{10, -20}, {4, 25}, 30] (* G. C. Greubel, Jan 08 2018 *)
-
x='x+O('x^30); Vec((4-15*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Jan 08 2018
Showing 1-5 of 5 results.
Comments