cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A229234 O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n*k*x).

Original entry on oeis.org

1, 1, 3, 19, 189, 2671, 50253, 1203679, 35548509, 1263153631, 52973381853, 2581493517439, 144317666200029, 9156299509121311, 653254398215833053, 51995430120141924799, 4585316010326597014749, 445304380297565009962591, 47368550666889620425580253, 5492643630110295899167573759
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 189*x^4 + 2671*x^5 + 50253*x^6 +...
where
A(x) = 1 + x/(1-x) + 2!*x^2/((1-2*1*x)*(1-2*2*x)) + 3!*x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + 4!*x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 189*x^4/4! + 2671*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/2^2 + (exp(3*x)-1)^3/3^3 + (exp(4*x)-1)^4/4^4 + (exp(5*x)-1)^5/5^5 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/m^m),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(n-k) * k! * stirling(n, k, 2))}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(n-k) * k! * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n*x) - 1)^n / n^n.

A229233 O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - n*k*x).

Original entry on oeis.org

1, 1, 2, 8, 48, 387, 4043, 52425, 819346, 15133184, 324769270, 7986143453, 222514878501, 6958782341565, 242274294115558, 9324382604206368, 394282071192289024, 18218582054356563951, 915480348188869318723, 49812603754178905560085, 2923492374797360684715882
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Comments

Compare to an o.g.f. of Bell numbers (A000110): Sum_{n>=0} x^n/Product_{k=1..n} (1-k*x).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 48*x^4 + 387*x^5 + 4043*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-2*1*x)*(1-2*2*x)) + x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 48*x^4/4! + 387*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/(2!*2^2) + (exp(3*x)-1)^3/(3!*3^3) + (exp(4*x)-1)^4/(4!*4^4) + (exp(5*x)-1)^5/(5!*5^5) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(n-k) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/(m!*m^m)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(n-k) * stirling(n, k, 2))}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(n-k) * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n*x) - 1)^n / (n! * n^n).

A124421 Number of partitions of the set {1,2,...,n} having no blocks that contain only odd entries.

Original entry on oeis.org

1, 0, 1, 1, 5, 9, 52, 130, 855, 2707, 19921, 75771, 614866, 2717570, 24040451, 120652827, 1152972925, 6460552857, 66200911138, 408845736040, 4465023867757, 30083964854141, 348383154017581, 2539795748336375, 31052765897026352, 243282175672281360
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Column 0 of A124420.

Examples

			a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
		

Crossrefs

Bisection gives A108459 (even part).

Programs

  • Maple
    Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0,s=1,x=1},Q[n]),n=0..27);
    # second Maple program:
    a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](0,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..floor(n/2)} Stirling2(floor(n/2),j) * j^ceiling(n/2). - Alois P. Heinz, Oct 23 2013

A326600 E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2019

Keywords

Examples

			E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
		

Crossrefs

Formula

E.g.f.: exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!.
E.g.f.: exp(-1-y) * Sum_{n>=0} exp(n^2*x) * exp( y*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
T(n,n) = A000110(n) for n >= 0, where A000110 is the Bell numbers.
T(n,0) = A000110(2*n) for n >= 0, where A000110 is the Bell numbers.
Sum_{k=0..n} T(n,k) * (-1)^k = A108459(n) for n >= 0.
Sum_{k=0..n} T(n,k) = A326433(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 2^k = A326434(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 3^k = A326435(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 4^k = A326436(n) for n >= 0.

A051707 Number of factorizations of (n,n) into pairs (j,k).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 23, 1, 5, 5, 23, 1, 23, 1, 23, 5, 5, 1, 91, 3, 5, 8, 23, 1, 52, 1, 60, 5, 5, 5, 143, 1, 5, 5, 91, 1, 52, 1, 23, 23, 5, 1, 328, 3, 23, 5, 23, 1, 91, 5, 91, 5, 5, 1, 339, 1, 5, 23, 161, 5, 52, 1, 23, 5, 52, 1, 686, 1, 5, 23, 23, 5, 52, 1, 328, 23, 5, 1, 339, 5
Offset: 1

Views

Author

Keywords

Comments

Pairs (j,k) must satisfy j>1, k>=1; (a,b)*(x,y)=(a*x,b*y); unit is (1,1).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			(6,6)=(2,1)*(3,6)=(2,6)*(3,1)=(2,2)*(3,3)=(2,3)*(3,2), so a(6)=5.
		

Crossrefs

Cf. A050354, A108461, A108455, A348161 (into at most two pairs).
a(p^k) = A108457(k).
Main diagonal of A108455.

Extensions

Edited by Christian G. Bower, Jun 03 2005

A320082 Expansion of e.g.f. Sum_{k>=0} log(1 + k*x)^k/k!.

Original entry on oeis.org

1, 1, 3, 5, -60, -186, 13832, -98862, -8631360, 352796880, 4245955032, -1185349047048, 48595690153920, 3201334718188320, -607575977909763840, 26489851912606455504, 4482546578798646251520, -958939334596403708474880, 50300999315063602037775360, 14223928928980522264922223360, -3933112779003946549567400925696
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2018

Keywords

Crossrefs

Programs

  • Maple
    1,seq(n!*coeff(series(add(log(1+k*x)^k/k!, k=1..100), x=0, 21), x, n), n=1..20); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[1 + Sum[Log[1 + k x]^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    Join[{1}, Table[Sum[StirlingS1[n, k] k^n, {k, n}], {n, 20}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n,k)*k^n); \\ Altug Alkan, Oct 05 2018

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*k^n.

A326090 E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n!.

Original entry on oeis.org

1, 2, 6, 35, 308, 3637, 55150, 1033027, 23260536, 617066297, 18968614874, 666664879663, 26496140541700, 1179815542970053, 58388906382906390, 3189604848766578563, 191168734534622234480, 12504288586619417431921, 888401197086798248554546, 68270033412187747029025111, 5652853046029263008213465916, 502601914954325406783531231677, 47834047958592244085651443711406
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = 1, r = x.

Examples

			E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 35*x^3/3! + 308*x^4/4! + 3637*x^5/5! + 55150*x^6/6! + 1033027*x^7/7! + 23260536*x^8/8! + 617066297*x^9/9! + 18968614874*x^10/10! + ...
such that
A(x) = 1 + (1 + exp(x))*x + (1 + exp(2*x))^2*x^2/2! + (1 + exp(3*x))^3*x^3/3! + (1 + exp(4*x))^4*x^4/4! + (1 + exp(5*x))^5*x^5/5! + (1 + exp(6*x))^6*x^6/6! + ...
also
A(x) = exp(x) + exp(x + exp(x)*x)*x + exp(4*x + exp(2*x)*x)*x^2/2! + exp(9*x + exp(3*x)*x)*x^3/3! + exp(16*x + exp(4*x)*x)*x^4/4! + exp(25*x + exp(5*x)*x)*x^5/5! + exp(36*x + exp(6*x)*x)*x^6/6! + ...
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} (1 + exp(n*x))^n * x^n/n!  =  Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x ) * x^n/n!.
(1) At x = -1, the following sums are equal
S1 = Sum_{n>=0} (1 + exp(-n))^n * (-1)^n/n!,
S1 = Sum_{n>=0} exp(-n^2) * exp( -exp(-n) ) * (-1)^n/n!,
where S1 = 0.12121214669421724219987424741512642137552627624687959194...
(2) At x = -log(2), the following sums are equal
S2 = Sum_{n>=0} (1 + 1/2^n)^n * log(1/2)^n/n!,
S2 = Sum_{n>=0} 2^(-n^2) * 2^(-1/2^n) * log(1/2)^n/n!,
where S2 = 0.26746154600304489791062659014323146833150028333177021587...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n! */
    {a(n) = my(A = sum(m=0, n, (1 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} exp( n^2*x + exp(n*x)*x ) * x^n/n! */
    {a(n) = my(A = sum(m=0, n, exp(m^2*x + exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n!.
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x ) * x^n/n!.

A192935 E.g.f.: Sum_{n>=0} ((1+x)^n - 1)^n / n!.

Original entry on oeis.org

1, 1, 4, 39, 592, 12965, 378276, 14062363, 643946920, 35426253465, 2295988778440, 172565368741931, 14847924324645996, 1446814927797156541, 158201328106874927980, 19258822568210913998955, 2592339296719295037808336, 383513887126740027040942577
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2011

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = (1+x) and p = -1, r = 1. - Paul D. Hanna, Jun 21 2019

Examples

			E.g.f: A(x) = 1 + x + 4*x^2/2! + 39*x^3/3! + 592*x^4/4! + 12965*x^5/5! + 378276*x^6/6! + 14062363*x^7/7! + 643946920*x^8/8! + 35426253465*x^9/9! + 2295988778440*x^10/10! +...
such that
A(x) = 1 + ((1+x) - 1) + ((1+x)^2 - 1)^2/2! + ((1+x)^3 - 1)^3/3! + ((1+x)^4 - 1)^4/4! + ((1+x)^5 - 1)^5/5! + ((1+x)^6 - 1)^6/6! + ((1+x)^7 - 1)^7/7! + ...
also
A(x) = 1 + (1+x)*exp(-(1+x)) + (1+x)^4*exp(-(1+x)^2)/2! + (1+x)^9*exp(-(1+x)^3)/3! + (1+x)^16*exp(-(1+x)^4)/4! + (1+x)^25*exp(-(1+x)^5)/5! + (1+x)^36*exp(-(1+x)^6)/6! + (1+x)^49*exp(-(1+x)^7)/7! + ...
RELATED SERIES.
Expansion of ((1+x)^n-1)^n suggests that the e.g.f. is related to LambertW(x):
((1+x)^2-1)^2 = 4*x^2 + 4*x^3 + x^4;
((1+x)^3-1)^3 = 27*x^3 + 81*x^4 + 108*x^5 + 81*x^6 + 36*x^7 + 9*x^8 + x^9;
((1+x)^4-1)^4 = 256*x^4 + 1536*x^5 + 4480*x^6 + 8320*x^7 + 10896*x^8 +...
		

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[((1+x)^n -1)^n/Factorial(n): n in [0..m+2]]) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 06 2019
    
  • Mathematica
    With[{m = 20}, CoefficientList[Series[Sum[If[n==0, 1, ((1+x)^n -1)^n/n!], {n,0,m+2}], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,((1+x+x*O(x^n))^m-1)^m/m!),n)}
    for(n=0, 30, print1(a(n)*n!, ", "))
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*k!*polcoeff(sum(m=0,k,(exp(m*x+x*O(x^n))-1)^m/m!),k))}
    for(n=0, 30, print1(a(n)*n!, ", "))
    
  • Sage
    m = 20; T = taylor(sum(((1+x)^k-1)^k/factorial(k) for k in range(m+2)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 06 2019

Formula

E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(-(1+x)^n) / n!. - Paul D. Hanna, Jun 21 2019
a(n) = (1/n!)* Sum_{k=0..n} Stirling1(n,k)*A108459(k), where the e.g.f. of A108459 = Sum_{n>=0} (exp(n*x)-1)^n/n! (see Vladeta Jovovic's formula in A122400).

A326091 E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n!.

Original entry on oeis.org

1, 3, 11, 66, 601, 7418, 116505, 2248522, 52025473, 1414524690, 44471074249, 1595792690594, 64659403375137, 2931455146804330, 147550017664392457, 8189594420467104042, 498288959815836863233, 33061714451161940667554, 2381086262720126177230473, 185362512554618232339122578, 15539467373234774634135507361, 1398111233425766921500901239098, 134584560980879138160145116701257
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = 2, r = x.

Examples

			E.g.f.: A(x) = 1 + 3*x + 11*x^2/2! + 66*x^3/3! + 601*x^4/4! + 7418*x^5/5! + 116505*x^6/6! + 2248522*x^7/7! + 52025473*x^8/8! + 1414524690*x^9/9! + 44471074249*x^10/10! + ...
such that
A(x) = 1 + (2 + exp(x))*x + (2 + exp(2*x))^2*x^2/2! + (2 + exp(3*x))^3*x^3/3! + (2 + exp(4*x))^4*x^4/4! + (2 + exp(5*x))^5*x^5/5! + (2 + exp(6*x))^6*x^6/6! + ...
also
A(x) = exp(2*x) + exp(x + 2*exp(x)*x)*x + exp(4*x + 2*exp(2*x)*x)*x^2/2! + exp(9*x + 2*exp(3*x)*x)*x^3/3! + exp(16*x + 2*exp(4*x)*x)*x^4/4! + exp(25*x + 2*exp(5*x)*x)*x^5/5! + exp(36*x + 2*exp(6*x)*x)*x^6/6! + ...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n! */
    {a(n) = my(A = sum(m=0, n, (2 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} exp( n^2*x + 2*exp(n*x)*x ) * x^n/n! */
    {a(n) = my(A = sum(m=0, n, exp(m^2*x + 2*exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n!.
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( 2*exp(n*x)*x ) * x^n/n!.

A326261 E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n!.

Original entry on oeis.org

1, 4, 18, 115, 1076, 13749, 223342, 4437115, 105308472, 2930229721, 94110395546, 3444510650343, 142161931150564, 6557368148307253, 335460464343013494, 18907437932151629899, 1167279375125285092592, 78529603970775837111729, 5730854443905658384812466, 451803953552256670477653679, 38337003901469883140928003036, 3489532046271886600931347767373
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = 3, r = x.

Examples

			E.g.f.: A(x) = 1 + 4*x + 18*x^2/2! + 115*x^3/3! + 1076*x^4/4! + 13749*x^5/5! + 223342*x^6/6! + 4437115*x^7/7! + 105308472*x^8/8! + 2930229721*x^9/9! + 94110395546*x^10/10! + ...
such that
A(x) = 1 + (3 + exp(x))*x + (3 + exp(2*x))^2*x^2/2! + (3 + exp(3*x))^3*x^3/3! + (3 + exp(4*x))^4*x^4/4! + (3 + exp(5*x))^5*x^5/5! + (3 + exp(6*x))^6*x^6/6! + ...
also
A(x) = exp(3*x) + exp(x + 3*exp(x)*x)*x + exp(4*x + 3*exp(2*x)*x)*x^2/2! + exp(9*x + 3*exp(3*x)*x)*x^3/3! + exp(16*x + 3*exp(4*x)*x)*x^4/4! + exp(25*x + 3*exp(5*x)*x)*x^5/5! + exp(36*x + 3*exp(6*x)*x)*x^6/6! + ...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n! */
    {a(n) = my(A = sum(m=0, n, (3 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} exp( n^2*x + 3*exp(n*x)*x ) * x^n/n! */
    {a(n) = my(A = sum(m=0, n, exp(m^2*x + 3*exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n!.
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( 3*exp(n*x)*x ) * x^n/n!.
Showing 1-10 of 21 results. Next