cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108661 Square loops: the number of circular permutations (reversals not counted as different) of the numbers 0 to n such that the sum of any two consecutive numbers is a square.

Original entry on oeis.org

6, 3, 3, 72, 226, 358, 309, 391, 547, 813, 3562, 10741, 36633, 94547, 120424, 393670, 676579, 1088429, 5531195, 3294327, 8335128, 27820643, 75288569, 111875702, 264015370, 465407197, 687532936, 1109951444, 3256360099
Offset: 31

Views

Author

Keywords

Examples

			There is no solution for n=0,...,30, (note offset=31). For n=0,1 we have the trivial square circles {0} and {0,1}, which are not included in the sequence.
There are only six possible square loops of the minimum length (n=31 case):
{1,0,4,5,31,18,7,29,20,16,9,27,22,3,13,12,24,25,11,14,2,23,26,10,6,30,19,17,8,28,21,15},
{1,0,4,12,13,3,6,30,19,17,8,28,21,15,10,26,23,2,14,22,27,9,16,20,29,7,18,31,5,11,25,24},
{1,0,4,21,28,8,17,19,30,6,3,13,12,24,25,11,5,31,18,7,29,20,16,9,27,22,14,2,23,26,10,15},
{1,15,10,26,23,2,14,22,27,9,16,20,29,7,18,31,5,11,25,0,4,21,28,8,17,19,30,6,3,13,12,24},
{1,15,21,28,8,17,19,30,6,10,26,23,2,14,11,5,31,18,7,29,20,16,9,27,22,3,13,12,4,0,25,24},
{1,15,21,28,8,17,19,30,6,10,26,23,2,14,11,25,0,4,5,31,18,7,29,20,16,9,27,22,3,13,12,24}.
In the n=32,33 (resp.) cases, there are three square loop solutions:
{1,0,4,32,17,19,30,6,3,13,12,24,25,11,5,31,18,7,29,20,16,9,27,22,14,2,23,26,10,15,21,28,8},
{1,8,28,21,4,32,17,19,30,6,3,13,12,24,25,11,5,31,18,7,29,20,16,0,9,27,22,14,2,23,26,10,15},
{1,8,28,21,15,10,26,23,2,14,22,27,9,16,20,29,7,18,31,5,11,25,0,4,32,17,19,30,6,3,13,12,24},
and
{1,0,4,32,17,19,30,6,3,13,12,24,25,11,5,20,29,7,18,31,33,16,9,27,22,14,2,23,26,10,15,21,28,8},
{1,8,28,21,4,32,17,19,30,6,3,13,12,24,25,11,5,20,29,7,18,31,33,16,0,9,27,22,14,2,23,26,10,15},
{1,8,28,21,15,10,26,23,2,14,22,27,9,16,33,31,18,7,29,20,5,11,25,0,4,32,17,19,30,6,3,13,12,24}
(resp.).
		

Crossrefs

Cf. A108658 = square chains.

Extensions

a(42)-a(47) from Donovan Johnson, Sep 14 2010
a(48)-a(52) from Fausto A. C. Cariboni, Sep 21 2018
a(53)-a(59) from Bert Dobbelaere, Dec 29 2018

A336749 Number of circular arrangements of the first n positive integers such that adjacent terms have absolute difference 1 or 4.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 3, 6, 5, 10, 12, 14, 25, 27, 40, 57, 68, 104, 133, 177, 255, 324, 454, 617, 811, 1136, 1507, 2042, 2803, 3729, 5109, 6904, 9290, 12692, 17070, 23152, 31430, 42361, 57567, 77842, 105279, 142865, 193040, 261589, 354316, 479189, 649498, 878905
Offset: 5

Views

Author

Ethan Patrick White, Aug 02 2020

Keywords

Comments

Permutations in which adjacent terms sum to a particular value is a property central to the sequences A090460, A071984, A108658, A272259, and A107929.

Crossrefs

See A079977 or A017899 for other sequences counting similar circular arrangements of positive integers.

Programs

  • Mathematica
    CoefficientList[ Series[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 + x - x^3 - x^4 - 2*x^5 - 2*x^6 - x^7 - x^8 - x^9), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 07 2020 *)

Formula

a(n) = -a(n-1) + a(n-3) + a(n-4) + 2*a(n-5) + 2*a(n-6) + a(n-7) + a(n-8) + a(n-9) for n > 13.
G.f.: x^5*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 + x - x^3 - x^4 - 2*x^5 - 2*x^6 - x^7 - x^8 - x^9). - Stefano Spezia, Aug 03 2020
Showing 1-2 of 2 results.