cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108679 a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)^2*(n+6)/86400.

Original entry on oeis.org

1, 21, 196, 1176, 5292, 19404, 60984, 169884, 429429, 1002001, 2186184, 4504864, 8836464, 16604784, 30046752, 52581816, 89311761, 147685461, 238369516, 376372920, 582481900, 885069900, 1322357400, 1945206900, 2820550005, 4035556161, 5702666256, 7965629056
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
6th column of the table of Narayana numbers A001263. - Zerinvary Lajos, Jun 18 2007
Sequence provided by binomial(n-1,m)*binomial(n,m)/(m+1) for m=5 and n>5 (these numbers are also called Runyon numbers, see T. Koshy in References). - Vincenzo Librandi, Sep 04 2014

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 1).
  • T. Koshy, Catalan Numbers with Applications, Oxford University Press, 2009, p. 7.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=7. - N. J. A. Sloane, Aug 28 2010

Crossrefs

Cf. A001263, A002378, A005585, A006542, A006857 (sequences having a similar structure), A288876.

Programs

  • Magma
    [Binomial(n-1,5)*Binomial(n,5)/6: n in [6..45]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)^2*(n+6)/86400: seq(a(n),n=0..40);
  • Mathematica
    Table[(n + 1) (n + 2)^2 (n + 3)^2 (n + 4)^2 (n + 5)^2 (n + 6)/86400,{n, 0, 50}]  (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    Vec((1+10*x+20*x^2+10*x^3+x^4)/(1-x)^11 + O(x^99)) \\ Altug Alkan, Sep 02 2016
    
  • SageMath
    def A108679(n): return binomial(n+5,5)*binomial(n+6,5)//6
    print([A108679(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

a(n) = binomial(n+5, 5)*binomial(n+6, 5)/6 = binomial(n+6, 6)*binomial(n+6, 5)/(n+6).
a(n) = A001263(n+6,6).
G.f.: (1 + 10*x + 20*x^2 + 10*x^3 + x^4)/(1 - x)^11. Numerator polynomial is the fifth row polynomial of the Narayana triangle.
a(n) = binomial(n+5,5)^2 - binomial(n+5,4)*binomial(n+5,6). - Gary Detlefs, Dec 05 2011
a(n) = Product_{i=1..5} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 27637/2 - 1400*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 2560*log(2) - 3547/2. (End)
a(n) = (A005585(n+2)^2 - A288876(n+1))/24. - Yasser Arath Chavez Reyes, Aug 19 2024