cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108949 Number of partitions of n with more even parts than odd parts.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 3, 6, 7, 10, 14, 19, 26, 33, 45, 58, 77, 97, 127, 161, 205, 259, 326, 411, 510, 639, 786, 980, 1197, 1482, 1800, 2216, 2677, 3275, 3942, 4793, 5749, 6951, 8309, 9995, 11912, 14259, 16944, 20194, 23926, 28402, 33559, 39687, 46767, 55120, 64780, 76110, 89222
Offset: 0

Views

Author

Len Smiley, Jul 21 2005

Keywords

Examples

			a(6) = 3: {[6], [4,2], [2,2,2]}; a(7) = 3: {[4,2,1], [3,2,2], [2,2,2,1]}.
		

Crossrefs

Cf. A045931 for #even parts = #odd parts, A108950 for #even parts < #odd parts.
Cf. A171966, A130780. - Reinhard Zumkeller, Jan 21 2010

Programs

  • Maple
    with(combinat,partition):
    evnbigrodd:=proc(n::nonnegint)
       local evencount,oddcount,bigcount,parts,i,j;
       bigcount:=0;
       partitions:=partition(n);
       for i from 1 to nops(partitions) do
          evencount:=0;
          oddcount:=0;
          for j from 1 to nops(partitions[i]) do
             if (op(j,partitions[i]) mod 2 <>0) then
                oddcount:=oddcount+1
             fi;
             if (op(j,partitions[i]) mod 2 =0) then
                evencount:=evencount+1
             fi
          od;
          if (evencount>oddcount) then
             bigcount:=bigcount+1
          fi
       od;
       return(bigcount)
    end proc;
    seq(evnbigrodd(i),i=1..42);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t<0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 30 2014
  • Mathematica
    p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, ?OddQ] == Count[#, ?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *)
    TableForm[t] (* partitions, vertical format *)
    Table[Length[p[n]], {n, 0, 30}] (* A045931 *)
    (* Peter J. C. Moses, Mar 10 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t<0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
  • PARI
    a(n) = {nb = 0; forpart(p=n, nb += (2*#(select(x->x%2, Vec(p))) < #p);); nb;} \\ Michel Marcus, Nov 02 2015

Formula

a(n) = A171966(n) - A045931(n) = A171967(n) - A108950(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = Sum_{k=-floor(n/2)+(n mod 2)..-1} A240009(n,k). - Alois P. Heinz, Mar 30 2014
G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2)*(1-q^(n))/Product_{k=1..n} (1-q^(2*k))^2. - Jeremy Lovejoy, Jan 12 2021

Extensions

More terms from Joerg Arndt, Oct 04 2012