A108949 Number of partitions of n with more even parts than odd parts.
0, 0, 1, 0, 2, 1, 3, 3, 6, 7, 10, 14, 19, 26, 33, 45, 58, 77, 97, 127, 161, 205, 259, 326, 411, 510, 639, 786, 980, 1197, 1482, 1800, 2216, 2677, 3275, 3942, 4793, 5749, 6951, 8309, 9995, 11912, 14259, 16944, 20194, 23926, 28402, 33559, 39687, 46767, 55120, 64780, 76110, 89222
Offset: 0
Keywords
Examples
a(6) = 3: {[6], [4,2], [2,2,2]}; a(7) = 3: {[4,2,1], [3,2,2], [2,2,2,1]}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Crossrefs
Programs
-
Maple
with(combinat,partition): evnbigrodd:=proc(n::nonnegint) local evencount,oddcount,bigcount,parts,i,j; bigcount:=0; partitions:=partition(n); for i from 1 to nops(partitions) do evencount:=0; oddcount:=0; for j from 1 to nops(partitions[i]) do if (op(j,partitions[i]) mod 2 <>0) then oddcount:=oddcount+1 fi; if (op(j,partitions[i]) mod 2 =0) then evencount:=evencount+1 fi od; if (evencount>oddcount) then bigcount:=bigcount+1 fi od; return(bigcount) end proc; seq(evnbigrodd(i),i=1..42); # second Maple program: b:= proc(n, i, t) option remember; `if`(n=0, `if`(t<0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Mar 30 2014
-
Mathematica
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, ?OddQ] == Count[#, ?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *) TableForm[t] (* partitions, vertical format *) Table[Length[p[n]], {n, 0, 30}] (* A045931 *) (* Peter J. C. Moses, Mar 10 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t<0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
-
PARI
a(n) = {nb = 0; forpart(p=n, nb += (2*#(select(x->x%2, Vec(p))) < #p);); nb;} \\ Michel Marcus, Nov 02 2015
Formula
a(n) = Sum_{k=-floor(n/2)+(n mod 2)..-1} A240009(n,k). - Alois P. Heinz, Mar 30 2014
G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2)*(1-q^(n))/Product_{k=1..n} (1-q^(2*k))^2. - Jeremy Lovejoy, Jan 12 2021
Extensions
More terms from Joerg Arndt, Oct 04 2012