cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109007 a(n) = gcd(n,3).

Original entry on oeis.org

3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1
Offset: 0

Views

Author

Keywords

Comments

For n>1: a(n) = GCD of the n-th and (n+2)-th triangular numbers = A050873(A000217(n+2), A000217(n)). - Reinhard Zumkeller, May 28 2007
From Klaus Brockhaus, May 24 2010: (Start)
Continued fraction expansion of (3+sqrt(17))/2.
Decimal expansion of 311/999. (End)

Crossrefs

Cf. A178255 (decimal expansion of (3+sqrt(17))/2). - Klaus Brockhaus, May 24 2010

Programs

Formula

a(n) = 1 + 2*[3|n] = 1 + 2(1 + 2*cos(2*n*Pi/3))/3, where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-3) for n>2.
Multiplicative with a(p^e, 3) = gcd(p^e, 3). - David W. Wilson, Jun 12 2005
O.g.f.: -(3+x+x^2)/((x-1)*(x^2+x+1)). - R. J. Mathar, Nov 24 2007
Dirichlet g.f. zeta(s)*(1+2/3^s). - R. J. Mathar, Apr 08 2011
a(n) = 2*floor(((n-1) mod 3)/2) + 1. - Gary Detlefs, Dec 28 2011
a(n) = 3^(1 - sgn(n mod 3)). - Wesley Ivan Hurt, Jul 24 2016
a(n) = 3/(1 + 2*((n^2) mod 3)). - Timothy Hopper, Feb 25 2017
a(n) = (5 + 4*cos(2*n*Pi/3))/3. - Wesley Ivan Hurt, Oct 04 2018