cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109044 a(n) = lcm(n,3).

Original entry on oeis.org

0, 3, 6, 3, 12, 15, 6, 21, 24, 9, 30, 33, 12, 39, 42, 15, 48, 51, 18, 57, 60, 21, 66, 69, 24, 75, 78, 27, 84, 87, 30, 93, 96, 33, 102, 105, 36, 111, 114, 39, 120, 123, 42, 129, 132, 45, 138, 141, 48, 147, 150, 51, 156, 159, 54, 165, 168, 57, 174, 177, 60, 183, 186, 63
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			G.f. = 3*x + 6*x^2 + 3*x^3 + 12*x^4 + 15*x^5 + 6*x^6 + 21*x^7 + 24*x^8 + ...
		

Crossrefs

Cf. A051176, A099837, A109007 (gcd(n,3)), A109042.

Programs

Formula

a(n) = 3*n/gcd(n,3) = 3*n/A109007(n).
From Bruno Berselli, Mar 11 2011: (Start)
G.f.: 3*x*(1+2*x+x^2+2*x^3+x^4)/(1-x^3)^2.
a(n) = 3*A051176(n);
a(n) = n*(7-2*A099837(n))/3 for n>0. (End)
From Wesley Ivan Hurt, Jul 24 2016: (Start)
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 9*n/(5 + 4*cos(2*n*Pi/3)).
If n mod 3 = 0 then 3*floor(n/3), else 3*n. (End)
a(n) = n*(1 + 2*((n^2) mod 3)). - Timothy Hopper, Feb 23 2017
From Michael Somos, Mar 04 2017: (Start)
G.f.: 3 * x / (1 - x)^2 - 6 * x^3 / (1 - x^3)^2. -
a(n) = a(-n) for all n in Z. (End)
Sum_{k=1..n} a(k) ~ (7/6) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(2)/9. - Amiram Eldar, Sep 08 2023