cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109053 a(n) = lcm(n,12).

Original entry on oeis.org

0, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12, 156, 84, 60, 48, 204, 36, 228, 60, 84, 132, 276, 24, 300, 156, 108, 84, 348, 60, 372, 96, 132, 204, 420, 36, 444, 228, 156, 120, 492, 84, 516, 132, 180, 276, 564, 48, 588, 300, 204, 156, 636, 108, 660, 168
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • GAP
    List([0..60],n->Lcm(n,12)); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [LCM(n, 12): n in [0..60]]; // G. C. Greubel, Mar 06 2019
  • Mathematica
    Array[LCM[#,12]&,60,0] (* Harvey P. Dale, Mar 26 2015 *)
  • PARI
    concat(0, Vec(12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24) + O(x^40))) \\ Colin Barker, Mar 04 2019
    
  • PARI
    for(n=0,60, print1(lcm(n,12), ", ")) \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    [lcm(n,12) for n in range(0,57)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = n*12/gcd(n, 12).
a(n) = 12*A051724(n). - R. J. Mathar, Feb 12 2019
From Colin Barker, Mar 04 2019: (Start)
G.f.: 12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24).
a(n) = 2*a(n-12) - a(n-24) for n>23.
(End)
Sum_{k=1..n} a(k) ~ (77/24) * n^2. - Amiram Eldar, Nov 26 2022