cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089627 T(n,k) = binomial(n,2*k)*binomial(2*k,k) for 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 0, 0, 1, 12, 6, 0, 0, 1, 20, 30, 0, 0, 0, 1, 30, 90, 20, 0, 0, 0, 1, 42, 210, 140, 0, 0, 0, 0, 1, 56, 420, 560, 70, 0, 0, 0, 0, 1, 72, 756, 1680, 630, 0, 0, 0, 0, 0, 1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0, 1, 110, 1980, 9240, 11550, 2772, 0, 0, 0, 0, 0, 0, 1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0, 1, 156, 4290, 34320, 90090, 72072, 12012, 0, 0, 0, 0, 0, 0, 0, 1, 182, 6006, 60060, 210210, 252252, 84084, 3432, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2003

Keywords

Comments

The rows of this triangle are the gamma vectors of the n-dimensional type B associahedra (Postnikov et al., p.38 ). Cf. A055151 and A101280. - Peter Bala, Oct 28 2008
T(n,k) is the number of Grand Motzkin paths of length n having exactly k upsteps (1,1). Cf. A109189, A055151. - Geoffrey Critzer, Feb 05 2014
The result Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*x^k = (sqrt(1 - 4*x))^n* P(n,1/sqrt(1 - 4*x)) expressing the row polynomials of this triangle in terms of the Legendre polynomials P(n,x) is due to Catalan. See Laden, equation 7.10, p. 56. - Peter Bala, Mar 18 2018

Examples

			Triangle begins:
  1
  1,   0
  1,   2,    0
  1,   6,    0,     0
  1,  12,    6,     0,     0
  1,  20,   30,     0,     0,     0
  1,  30,   90,    20,     0,     0,   0
  1,  42,  210,   140,     0,     0,   0, 0
  1,  56,  420,   560,    70,     0,   0, 0, 0
  1,  72,  756,  1680,   630,     0,   0, 0, 0, 0
  1,  90, 1260,  4200,  3150,   252,   0, 0, 0, 0, 0
  1, 110, 1980,  9240, 11550,  2772,   0, 0, 0, 0, 0, 0
  1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0
Relocating the zeros to be evenly distributed and interpreting the triangle as the coefficients of polynomials
                     1
                     1
                 1 + 2 q^2
                 1 + 6 q^2
            1 + 12 q^2 +  6 q^4
            1 + 20 q^2 + 30 q^4
       1 + 30 q^2 +  90 q^4 +  20 q^6
       1 + 42 q^2 + 210 q^4 + 140 q^6
  1 + 56 q^2 + 420 q^4 + 560 q^6 + 70 q^8
then the substitution q^k -> 1/(floor(k/2)+1) gives the Motzkin numbers A001006.
- _Peter Luschny_, Aug 29 2011
		

Crossrefs

Row sums A002426. Antidiagonal sums A098479.

Programs

  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*binomial(i-j, j), j=0..i) od; # Zerinvary Lajos, Jun 07 2006
    # Alternatively:
    R := (n, x) -> simplify(hypergeom([1/2 - n/2, -n/2], [1], 4*x)):
    Trow := n -> seq(coeff(R(n,x), x, j), j=0..n):
    seq(print(Trow(n)), n=0..9); # Peter Luschny, Mar 18 2018
  • Mathematica
    nn=15;mxy=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y);Map[Select[#,#>0&]&, CoefficientList[Series[1/(1-x-2y x^2mxy),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
  • PARI
    T(n,k) = binomial(n,2*k)*binomial(2*k,k);
    concat(vector(15, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 01 2018

Formula

T(n,k) = n!/((n-2*k)!*k!*k!).
E.g.f.: exp(x)*BesselI(0, 2*x*sqrt(y)). - Vladeta Jovovic, Apr 07 2005
O.g.f.: ( 1 - x - sqrt(1 - 2*x + x^2 - 4*x^2*y))/(2*x^2*y). - Geoffrey Critzer, Feb 05 2014
R(n, x) = hypergeom([1/2 - n/2, -n/2], [1], 4*x) are the row polynomials. - Peter Luschny, Mar 18 2018
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^i*binomial(n, i)*binomial(n-i, k-i)^2. Cf. A063007(n,k) = Sum_{i = 0..k} binomial(n, i)^2*binomial(n-i, k-i).
T(n,k) = A063007(n-k,k); that is, the diagonals of this table are the rows of A063007. (End)

A109190 Number of (1,0)-steps at level zero in all Grand Motzkin paths of length n.

Original entry on oeis.org

1, 0, 2, 2, 8, 16, 46, 114, 310, 822, 2238, 6094, 16764, 46308, 128650, 358862, 1005056, 2824416, 7962122, 22508350, 63792424, 181219680, 515905018, 1471593638, 4205280902, 12037415526, 34510499066, 99083855234, 284870069780
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

A Grand Motzkin path of length n is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) with steps u=(1,1), d=(1,-1) and h=(1,0).
Column 0 of A109189.
The substitution x->x/(1+x+x^2) in the g.f. (this might be called an inverse Motzkin transform), yields the g.f. of (-1)^n*A006355(n). - R. J. Mathar, Nov 10 2008
Apparently also the number of grand Motzkin paths of length n that avoid flat steps at level 0. - David Scambler, Jul 04 2013
Motzkin contexts such that along the path from the root to the hole there are only binary nodes. - Pierre Lescanne, Nov 11 2015

Examples

			a(3) = 2 because we have uhd and dhu.
		

Crossrefs

Programs

  • Maple
    g:=(sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[(Sqrt[1-2*x-3*x^2]-x)/(1-2*x-4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
  • PARI
    x='x+O('x^55); Vec((sqrt(1-2*x-3*x^2)-x)/(1-2*x-4*x^2)) \\ Altug Alkan, Nov 11 2015

Formula

G.f.: (sqrt(1-2*z-3*z^2)-z)/(1-2*z-4*z^2).
G.f.: 1/(1-2x^2*M(x)), M(x) the g.f. of the Motzkin numbers A001006. - Paul Barry, Mar 02 2010
D-finite with recurrence n*a(n) +(3-4*n)*a(n-1) +3*(1-n)*a(n-2) +2*(7*n-15)*a(n-3) +12*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 3^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
Showing 1-2 of 2 results.