A055151
Triangular array of Motzkin polynomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 6, 2, 1, 10, 10, 1, 15, 30, 5, 1, 21, 70, 35, 1, 28, 140, 140, 14, 1, 36, 252, 420, 126, 1, 45, 420, 1050, 630, 42, 1, 55, 660, 2310, 2310, 462, 1, 66, 990, 4620, 6930, 2772, 132, 1, 78, 1430, 8580, 18018, 12012, 1716, 1, 91, 2002, 15015, 42042
Offset: 0
The irregular triangle T(n,k) begins:
n\k 0 1 2 3 4 5 ...
0: 1
1: 1
2: 1 1
3: 1 3
4: 1 6 2
5: 1 10 10
6: 1 15 30 5
7: 1 21 70 35
8: 1 28 140 140 14
9: 1 36 252 420 126
10: 1 45 420 1050 630 42
... reformatted. - _Wolfdieter Lang_, Aug 24 2015
- Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press (2015), page 617, Corollary 10.8.2
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.
- Alois P. Heinz, Rows n = 0..200, flattened
- N. Alexeev, J. Andersen, R. Penner, and P. Zograf, Enumeration of chord diagrams on many intervals and their non-orientable analogs, arXiv:1307.0967 [math.CO], 2013-2014.
- Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Colin Defant, Postorder Preimages, arXiv preprint arXiv:1604.01723 [math.CO], 2016.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Thomas Grubb and Frederick Rajasekaran, Set Partition Patterns and the Dimension Index, arXiv:2009.00650 [math.CO], 2020. Mentions this sequence.
- Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College, 2022.
- Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.
- E. Marberg, Actions and identities on set partitions, arXiv preprint arXiv:1107.4173 [math.CO], 2011-2012.
- MathOverflow, Motzkin polynomials and enumeration of chord diagrams.
- Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021-2022. See p. 32.
- A. Postnikov, V. Reiner, and L. Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
- Claude Zeller and Robert Cordery, Light scattering as a Poisson process and first passage probability, arXiv:1906.11131 [cond-mat.stat-mech], 2019.
A107131 (row reversed),
A080159 (with trailing zeros),
A001006 = row sums,
A000108(n) = T(2n, n),
A001700(n) = T(2n+1, n),
A119020 (eigenvector),
A001263 (Narayana numbers),
A089627 (gamma vectors of type B associahedra),
A101280 (gamma vectors of type A permutohedra).
Cf.
A125181,
A134264,
A088617,
A161642,
A258820,
A003989,
A008315,
A091156,
A011973,
A097610,
A126120.
-
b:= proc(x, y) option remember;
`if`(y>x or y<0, 0, `if`(x=0, 1, expand(
b(x-1, y) +b(x-1, y+1) +b(x-1, y-1)*t)))
end:
T:= n-> (p-> seq(coeff(p, t, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..20); # Alois P. Heinz, Feb 05 2014
-
m=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#,#>0&]&, CoefficientList[ Series[m,{x,0,15}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
p[n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4 x]; Table[CoefficientList[p[n], x], {n, 0, 13}] // Flatten (* Peter Luschny, Jan 23 2018 *)
-
{T(n, k) = if( k<0 || 2*k>n, 0, n! / ((n-2*k)! * k! * (k+1)!))}
-
{T(n, k) = if( k<0 || 2*k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt((1 - x)^2 - 4*y*x^2 + x * O(x^n))), n), k))} /* Michael Somos, Feb 14 2006 */
-
{T(n, k) = n++; if( k<0 || 2*k>n, 0, polcoeff( polcoeff( serreverse( x / (1 + x + y*x^2) + x * O(x^n)), n), k))} /* Michael Somos, Feb 14 2006 */
A377148
a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 4, 14, 60, 225, 796, 2764, 9304, 30580, 98700, 313422, 981548, 3037473, 9301620, 28222000, 84927760, 253699285, 752863840, 2220831160, 6515581600, 19021079866, 55276625304, 159967084164, 461150383400, 1324652146775, 3792447499916, 10824189204014
Offset: 0
-
[&+[Binomial(k+3,3)*Binomial(k, n-k)^2: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, May 12 2025
-
Table[Sum[Binomial[k+3,3]*Binomial[k, n-k]^2,{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n, binomial(k+3, 3)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=3, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A109187
Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1
Offset: 0
T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[0] 1;
[1] 0, 1;
[2] 2, 0, 1;
[3] 0, 6, 0, 1;
[4] 6, 0, 12, 0, 1;
[5] 0, 30, 0, 20, 0, 1;
[6] 20, 0, 90, 0, 30, 0, 1;
[7] 0, 140, 0, 210, 0, 42, 0, 1;
[8] 70, 0, 560, 0, 420, 0, 56, 0, 1;
[9] 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1;
[10] 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1;
[11] ...
From _Peter Bala_, Feb 11 2017: (Start)
The infinitesimal generator begins
0
0 0
2 0 0
0 6 0 0
-6 0 12 0 0
0 -30 0 20 0 0
80 0 -90 0 30 0 0
0 560 0 -210 0 42 0 0
-2310 0 2240 0 -420 0 56 0 0
....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals:
A126869(t=0, column 0),
A002426(t=1, row sums),
A000984(t=2),
A026375(t=3),
A081671(t=4),
A098409(t=5),
A098410(t=6),
A104454(t=7).
-
G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
C := (n,x) -> binomial(2*n,n)*hypergeom([-n,-n],[-n+1/2],1/2-x/4):
seq(print(CL(C(n,x))), n=0..11); # Peter Luschny, Jan 23 2018
-
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
-
T(n,k) = if ((n-k)%2, 0, binomial(n,k)*binomial(n-k, (n-k)/2));
concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018
A377145
a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 3, 9, 34, 111, 351, 1103, 3384, 10224, 30536, 90222, 264186, 767663, 2215623, 6356907, 18143300, 51540885, 145801395, 410888595, 1153964520, 3230723826, 9019081038, 25112021154, 69750583164, 193303849531, 534602071341, 1475644537323, 4065845732794
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=2, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A377152
a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 5, 20, 95, 400, 1561, 5915, 21610, 76585, 265075, 898622, 2992235, 9810290, 31727815, 101379175, 320464280, 1003259080, 3113576320, 9586763720, 29305985800, 88997753446, 268642069750, 806394498200, 2408144329250, 7157177344225, 21177323087891
Offset: 0
-
f:= proc(n) local k; add(binomial(k+4,4)*binomial(k,n-k)^2,k=0..n) end proc:
map(f, [$0..50]); # Robert Israel, Dec 05 2024
-
a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A377153
a(n) = Sum_{k=0..n} binomial(k+5,5) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 6, 27, 140, 651, 2772, 11354, 44640, 169371, 624742, 2248575, 7922124, 27397937, 93214632, 312559200, 1034507696, 3384194616, 10954244952, 35118346760, 111602517096, 351819819414, 1100912299156, 3421515852834, 10566654790176, 32441857824859, 99060134392422
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+5, 5)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=5, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A377158
a(n) = Sum_{k=0..n} binomial(k+6,6) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 7, 35, 196, 994, 4578, 20118, 84540, 341397, 1335103, 5078227, 18852428, 68519920, 244413820, 857393700, 2963013816, 10102413972, 34025396580, 113329367816, 373642488044, 1220412680410, 3951964394642, 12695738508950, 40484919514284, 128216539026261
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+6, 6)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=6, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A377159
a(n) = Sum_{k=0..n} binomial(k+7,7) * binomial(k,n-k)^2.
Original entry on oeis.org
1, 8, 44, 264, 1446, 7152, 33516, 149688, 640233, 2642992, 10582220, 41249000, 157050660, 585621960, 2143442400, 7715164176, 27353809188, 95660348904, 330377130644, 1127996393656, 3810881349814, 12750188169312, 42276102419916, 139008143200536, 453526927536969
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+7, 7)*binomial(k, n-k)^2);
-
a089627(n, k) = n!/((n-2*k)!*k!^2);
my(N=7, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))
A101280
Triangle T(n,k) (n >= 1, 0 <= k <= floor((n-1)/2)) read by rows, where T(n,k) = (k+1)T(n-1,k) + (2n-4k)T(n-1,k-1).
Original entry on oeis.org
1, 1, 1, 2, 1, 8, 1, 22, 16, 1, 52, 136, 1, 114, 720, 272, 1, 240, 3072, 3968, 1, 494, 11616, 34304, 7936, 1, 1004, 40776, 230144, 176896, 1, 2026, 136384, 1328336, 2265344, 353792, 1, 4072, 441568, 6949952, 21953408, 11184128, 1, 8166, 1398000, 33981760
Offset: 1
Triangle begins:
1;
1,
1, 2;
1, 8,
1, 22, 16;
1, 52, 136,
1, 114, 720, 272;
...
From _Peter Bala_, Jun 26 2012: (Start)
n = 4: the 9 weighted plane increasing 0-1-2 trees on 4 vertices are
..................................................................
..4...............................................................
..|...............................................................
..3..........4...4...............4...4...............3...3........
..|........./.....\............./.....\............./.....\.......
..2....2...3.......3...2...3...2.......2...3...4...2.......2...4..
..|.....\./.........\./.....\./.........\./.....\./.........\./...
..1...(t)1........(t)1....(t)1........(t)1....(t)1........(t)1....
..................................................................
..3...4...4...3...................................................
...\./.....\./....................................................
.(t)2....(t)2.....................................................
....|.......|.....................................................
....1.......1.....................................................
Hence R(4,t) = 1 + 8*t.
(End)
- D. Foata and V. Strehl, "Euler numbers and variations of permutations", in Colloquio Internazionale sulle Teorie Combinatorie, Rome, September 1973, (Atti dei Convegni Lincei 17, Rome, 1976), 129.
- Guoniu Han, Frédéric Jouhet, Jiang Zeng, Two new triangles of q-integers via q-Eulerian polynomials of type A and B, Ramanujan J (2013) 31:115-127, DOI 10.1007/s11139-012-9389-3
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 4.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- François Bergeron, Philippe Flajolet and Bruno Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Leonard Carlitz and Richard Scoville, Generalized Eulerian numbers: combinatorial applications, Journal für die reine und angewandte Mathematik 265 (1974), 111.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- Diego Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052 [math.CA], 2005.
- Dominique Foata and Marcel-Paul Schützenberger, Théorie géometrique des polynômes eulériens, arXiv:math/0508232 [math.CO], 2005; Lecture Notes in Math. 138 (1970), 81-83.
- Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of descent polynomials and the change of grammars, arXiv:1802.02861 [math.CO], 2018.
- Shi-Mei Ma, Jianfeng Wang, Guiying Yan, Jean Yeh, and Yeong-Nan Yeh, Symmetric decompositions and Euler-Stirling statistics on Stirling permutations, arXiv:2507.17667 [math.CO], 2025. See p. 5.
- Shi-Mei Ma and Yeong-Nan Yeh, The alternating run polynomials of permutations, arXiv:1904.11437 [math.CO], 2019. See p. 4.
- Alexander Postnikov, Victor Reiner, and Lauren Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007. [_Peter Bala_, Oct 28 2008]
- Louis W. Shapiro, Wen-Jin Woan, and Seyoum Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
- Andrei K. Svinin, Somos-4 equation and related equations, arXiv:2307.05866 [math.CA], 2023. See p. 16.
The numbers 2^{n-1-k} T(n, k) form the array shown in
A008303.
-
T:=proc(n,k) if k<0 then 0 elif n=1 and k=0 then 1 elif k>floor((n-1)/2) then 0 else (k+1)*T(n-1,k)+(2*n-4*k)*T(n-1,k-1) fi end: for n from 1 to 13 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form # Emeric Deutsch, Aug 06 2005
-
t[, k?Negative] = 0; t[1, 0] = 1; t[n_, k_] /; k > (n-1)/2 = 0; t[n_, k_] := t[n, k] = (k+1)*t[n-1, k] + (2*n-4*k)*t[n-1, k-1]; Table[t[n, k], {n, 1, 13}, {k, 0, (n-1)/2}] // Flatten (* Jean-François Alcover, Nov 22 2012 *)
A163649
Triangle interpolating between (-1)^n (A033999) and A056040(n), read by rows.
Original entry on oeis.org
1, -1, 1, 1, -2, 2, -1, 3, -6, 6, 1, -4, 12, -24, 6, -1, 5, -20, 60, -30, 30, 1, -6, 30, -120, 90, -180, 20, -1, 7, -42, 210, -210, 630, -140, 140, 1, -8, 56, -336, 420, -1680, 560, -1120, 70
Offset: 0
1
-1, 1
1, -2, 2
-1, 3, -6, 6
1, -4, 12, -24, 6
-1, 5, -20, 60, -30, 30
1, -6, 30, -120, 90, -180, 20
-1, 7, -42, 210, -210, 630, -140, 140
1, -8, 56, -336, 420, -1680, 560, -1120, 70
-
a := proc(n,k) (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)! end:
seq(print(seq(a(n,k),k=0..n)),n=0..8);
-
t[n_, k_] := (-1)^(n - k)*Floor[k/2]!^(-2)*n!/(n - k)!; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
for(n=0,10, for(k=0,n, print1((-1)^(n -k)*( (floor(k/2))! )^(-2)*(n!/(n - k)!), ", "))) \\ G. C. Greubel, Aug 01 2017
Showing 1-10 of 18 results.
Comments