cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A180153 a(n) = 10*a(n-1) + A109242(n).

Original entry on oeis.org

1, 121, 12421, 1246421, 124696421, 12470296421, 1247037296421, 124703817296421, 12470382717296421, 1247038282717296421, 124703828392717296421, 12470382840592717296421, 1247038284073592717296421, 124703828407513592717296421, 12470382840753013592717296421
Offset: 1

Views

Author

Mark Dols, Aug 13 2010

Keywords

Crossrefs

Programs

  • PARI
    Vec(x / ((x-1)*(10*x-1)^2*(100*x-1)) + O(x^30)) \\ Colin Barker, Oct 03 2015

Formula

From Colin Barker, Oct 03 2015: (Start)
a(n) = 121*a(n-1)-2220*a(n-2)+12100*a(n-3)-10000*a(n-4) for n>4.
G.f.: x / ((x-1)*(10*x-1)^2*(100*x-1)).
(End)

A109241 Expansion of 1/((1-10*x)*(1-100*x)).

Original entry on oeis.org

1, 110, 11100, 1111000, 111110000, 11111100000, 1111111000000, 111111110000000, 11111111100000000, 1111111111000000000, 111111111110000000000, 11111111111100000000000, 1111111111111000000000000, 111111111111110000000000000, 11111111111111100000000000000
Offset: 0

Views

Author

Paul Barry, Jun 23 2005

Keywords

Comments

a(n) has n+1 1's and n 0's. Partial sums are A109242.
a(n) = A171476(n) converted from decimal to binary. - Robert Price, Jan 19 2016
Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 206 and 238. - Robert Price, Feb 21 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

Formula

a(n) = (10^(2n+1) - 10^n)/9.
a(n) = A006516(n+1) written in base 2. - Omar E. Pol, Feb 24 2008
a(n) = A138147(n+1)/10. - Omar E. Pol, Nov 08 2008
a(n) = 110*a(n-1) -1000*a(n-2), n>=2. - Vincenzo Librandi, Mar 18 2011
a(n) = A002275(n+1)*10^n. - Wesley Ivan Hurt, Jun 22 2013
E.g.f.: (1/9)*(10*exp(100*x) - exp(10*x)). - G. C. Greubel, Aug 01 2017

A349805 a(n) = A261138(n)/11.

Original entry on oeis.org

1, 111, 11211, 1122211, 112232211, 11223332211, 1122334332211, 112233444332211, 11223344544332211, 112233444636544332211, 1122334446373736544332211, 11223344463737473736544332211, 112233444637374666473736544332211, 1122334446373746649466473736544332211, 11223344463737466492319466473736544332211
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2021

Keywords

Crossrefs

Cf. A261138.
A109242 has the same initial terms.

Programs

  • Maple
    a:= n-> (s-> parse(cat(s, seq(s[-i], i=1..length(s))))/11)(cat("", $1..n)):
    seq(a(n), n=1..14);  # Alois P. Heinz, Dec 01 2021
  • Python
    def A349805(n): return int((lambda x: x+x[::-1])(''.join(str(d) for d in range(1,n+1))))//11 # Chai Wah Wu, Dec 01 2021

Extensions

More than the usual number of terms are shown in order to distinguish this from several similar sequences.

A244842 a(n) = (10^n - 1)*(10^n - 10)/90.

Original entry on oeis.org

0, 99, 10989, 1109889, 111098889, 11110988889, 1111109888889, 111111098888889, 11111110988888889, 1111111109888888889, 111111111098888888889, 11111111110988888888889, 1111111111109888888888889, 111111111111098888888888889, 11111111111110988888888888889
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 08 2014

Keywords

Comments

For n > 1, the digit sums of a(n) are 18, 27, 36, ..., 9n (see example).

Examples

			-------------------------------------------------------
n    a(n)                    digitsum(a(n))    9*n
-------------------------------------------------------
2:   99                            18          9*2
3:   10989                         27          9*3
4:   1109889                       36          9*4
5:   111098889                     45          9*5
6:   11110988889                   54          9*6
7:   1111109888889                 63          9*7
8:   111111098888889               72          9*8
9:   11111110988888889             81          9*9
10:  1111111109888888889           90         9*10
11:  111111111098888888889         99         9*11
12:  11111111110988888888889      108         9*12, etc.
		

Crossrefs

Programs

  • Magma
    [(10^n-1)*(10^n-10)/90: n in [1..15]];
  • Maple
    A244842:=n->(10^n - 1)*(10^n - 10)/90: seq(A244842(n), n=1..15);
  • Mathematica
    Table[(10^n - 1) (10^n - 10)/90, {n, 15}]

Formula

G.f.: -99*x / ( (x-1)*(100*x-1)*(10*x-1) ). - R. J. Mathar, Jul 11 2014
a(n) = 99*A109242(n-2). - R. J. Mathar, Jul 11 2014

A210257 Construct a triangle with centered rows in which row n contains n copies of n; form the componentwise sum of the first n rows and concatenate these decimal numbers to get a(n).

Original entry on oeis.org

1, 212, 32423, 4364634, 548696845, 651081291281056, 7612101512161215101267, 87141218152016201518121478, 981614211824202520241821141689, 109181624212824302530242821241618910
Offset: 1

Views

Author

Dave Durgin, Mar 19 2012

Keywords

Comments

A109242 may be constructed using a similar pyramid algorithm:
....1..........a(1) = 1
...1 1.........a(2) = 111
..1 1 1........a(3) = 11211
.1 1 1 1.......a(4) = 1122211

Examples

			...1................a(1) = 1
..2 2...............a(2) = 212
.3 3 3..............a(3) = 32423
4 4 4 4.............a(4) = 4364634
		

Extensions

Definition edited by N. J. A. Sloane, Jan 11 2020

A275944 Gaussian binomial coefficient [n,3] for q = 10.

Original entry on oeis.org

1, 1111, 1122211, 1123333211, 1123445443211, 1123456666543211, 1123457788877543211, 1123457901110987543211, 1123457912334332087543211, 1123457913456666543087543211, 1123457913568899988653087543211, 1123457913580123333209753087543211, 1123457913581245667665420753087543211
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 13 2016

Keywords

Comments

More generally, the ordinary generation function for the Gaussian binomial coefficients [n,k]q is x^k/Product{m=0..k} (1 - q^m*x).
Convolution of A002275 and A147816 (considering offset: 0, 0, 1, 1100, 1110000, ...).
The first seven members are palindromes.

Crossrefs

Programs

  • Mathematica
    Table[((10^n - 100) (10^n - 10) (10^n - 1))/890109000, {n, 0, 15}]
    Table[QBinomial[n, 3, 10], {n, 3, 15}]

Formula

O.g.f.: x^3/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
E.g.f.: (-1000 + 1110*exp(9*x) - 111*exp(99*x) + exp(999*x))*exp(x)/890109000.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4).
a(n) = ((10^n - 100)*(10^n - 10)*(10^n - 1))/890109000.
a(n) = Product_{i=0..2} (1 - 10^(n-i))/(1 - 10^(i+1)).
Showing 1-6 of 6 results.