cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109344 a(n) consists of n 4's, n-1 8's and a single 9 (in that order).

Original entry on oeis.org

49, 4489, 444889, 44448889, 4444488889, 444444888889, 44444448888889, 4444444488888889, 444444444888888889, 44444444448888888889, 4444444444488888888889, 444444444444888888888889, 44444444444448888888888889, 4444444444444488888888888889, 444444444444444888888888888889
Offset: 1

Views

Author

Nicholas Protonotarios (protost(AT)hotmail.com), Aug 21 2005

Keywords

Comments

All terms are squares. The square roots are in A067275.
In the same category, we have 729, 71289, 7112889, ... with square roots in A199688. - Michel Marcus, Mar 21 2014

Examples

			a(5) = 4444488889 because the first 5 digits are 4's, the next 5 - 1 = 4 digits are 8's and the last digit is 9.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 30 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, p. 112, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 31 2008]
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.5 on page 159.
  • Paul Zeitz, The Art and Craft of Problem Solving, John Wiley and Sons, Inc., New York, 1999.

Crossrefs

Programs

  • Maple
    a:=n->4*sum('10^i', 'i'=n..2*n-1)+8*sum('10^i', 'i'=1..n-1)+9;
  • Mathematica
    LinearRecurrence[{111,-1110,1000},{49,4489,444889},20] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    a(n) = (2*10^n/3 + 1/3)^2 \\ David A. Corneth, Jan 27 2021

Formula

a(1)=49; a(n) = 4*(Sum_{i=n..2*n-1} 10^i) + 8*(Sum_{i=1..n-1} 10^i) + 9, n >= 2.
From R. J. Mathar, Jan 06 2009: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) = (4*100^n + 4*10^n + 1)/9.
G.f.: x*(49 - 950*x + 1000*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: (1/9)*exp(x)*(1 + 4*exp(9*x) + 4*exp(99*x)) - 1. - Stefano Spezia, Aug 22 2019

Extensions

More terms from Harvey P. Dale, Nov 28 2014
Edited by Jon E. Schoenfield, Sep 03 2018