cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109588 n followed by n^2 followed by n^3.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64, 5, 25, 125, 6, 36, 216, 7, 49, 343, 8, 64, 512, 9, 81, 729, 10, 100, 1000, 11, 121, 1331, 12, 144, 1728, 13, 169, 2197, 14, 196, 2744, 15, 225, 3375, 16, 256, 4096, 17, 289, 4913, 18, 324, 5832, 19, 361, 6859, 20, 400, 8000
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 30 2005

Keywords

Crossrefs

Cf. A000463.

Programs

  • GAP
    Flat(List([1..20],n->[n,n^2,n^3])); # Muniru A Asiru, Sep 12 2018
  • Maple
    seq(seq(n^k, k=1..3), n=1..20); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    CoefficientList[Series[(1 + x + x^2 - 2*x^3 + 4*x^5 + x^6 - x^7 + x^8)/((1 - x)^4*(1 + x + x^2)^4), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *)
    Table[{n,n^2,n^3},{n,20}]//Flatten (* or *) LinearRecurrence[{0,0,4,0,0,-6,0,0,4,0,0,-1},{1,1,1,2,4,8,3,9,27,4,16,64},60] (* Harvey P. Dale, Jan 10 2020 *)

Formula

From R. J. Mathar, Mar 30 2009: (Start)
a(n) = 4*a(n-3) - 6*a(n-6) + 4*a(n-9) - a(n-12).
a(3*k+1) = k+1, a(3*k+2) = A000290(k+1), a(3*k+3) = A000578(k+1).
G.f.: x*(1 + x + x^2 - 2*x^3 + 4*x^5 + x^6 - x^7 + x^8)/((1 - x)^4*(1 + x + x^2)^4). (End)
a(n) = floor((n + 2)/3)*((1 - (-1)^(2^(n + 2 - 3*floor((n + 2)/3))))/2 + floor((n + 2)/3)*(1 - (-1)^(2^(n + 1 - 3*floor((n + 1)/3))))/2 + (floor((n + 2)/3))^2*(1 - (-1)^(2^(n - 3*floor(n/3))))/2). - Luce ETIENNE, Dec 16 2014
E.g.f.: ((2*x^3 + 3*x^2 + 8*x - 21)*exp(-x/2)*cos(sqrt(3)*x/2) + (3*x^2 + 8*x + 15)*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2) + (x^3 + 6*x^2 + 19*x + 21)*exp(x))/81. - Robert Israel, Dec 17 2014