A109808 a(n) = 2*7^(n-1).
2, 14, 98, 686, 4802, 33614, 235298, 1647086, 11529602, 80707214, 564950498, 3954653486, 27682574402, 193778020814, 1356446145698, 9495123019886, 66465861139202, 465261027974414, 3256827195820898, 22797790370746286, 159584532595224002, 1117091728166568014
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences.
- W. Kook, Edge-rooted forests and alpha-invariant of cone graphs, Discrete Applied Mathematics, Volume 155, Issue 8, 15 April 2007, Pages 1071-1075.
- Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
- Index entries for linear recurrences with constant coefficients, signature (7).
Programs
-
Magma
[2*7^(n-1):n in [1..25]]; // Vincenzo Librandi, Sep 15 2011
-
Maple
a:= n-> 2*7^(n-1): seq(a(n), n=1..30);
-
Mathematica
2*7^Range[0, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
-
PARI
a(n)=7^n*2/7 \\ Charles R Greathouse IV, Jun 10 2011
Formula
a(n) = 2*7^(n-1); a(n) = 7*a(n-1) where a(1) = 2.
G.f.: 2*x/(1 - 7*x). - Philippe Deléham, Nov 23 2008
E.g.f.: 2*(exp(7*x) - 1)/7. - Stefano Spezia, May 29 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 7/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/16.
Product_{n>=1} (1 - 1/a(n)) = A132023. (End)
Extensions
Name changed by Arkadiusz Wesolowski, Oct 20 2013
Comments