cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A321982 Row n gives the chromatic symmetric function of the n-ladder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

2, 0, 12, 2, 0, 0, 0, 54, 26, 16, 0, 2, 0, 0, 0, 0, 0, 0, 216, 120, 168, 84, 0, 24, 40, 32, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 810, 648, 822, 56, 240, 870, 280, 282, 120, 24, 0, 266, 232, 0, 48, 0, 54, 0, 48, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-ladder has 2*n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
Conjecture: All terms are nonnegative (verified up to the 5-ladder).

Examples

			Triangle begins:
    2   0
   12   2   0   0   0
   54  26  16   0   2   0   0   0   0   0   0
  216 120 168  84   0  24  40  32   0   0   2   0   0   [+9 more zeros]
For example, row 3 gives: X_L3 = 54e(6) + 26e(42) + 16e(51) + 2e(222).
		

Crossrefs

A207864 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 4, 34, 500, 10900, 322768, 12297768, 580849872, 33093252880, 2227152575552, 174131286983712, 15604440074084672, 1584856558077903168, 180712593036822482176, 22946861101272125055616, 3222156375409363475703040
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

From Gus Wiseman, Mar 01 2019: (Start)
Also the number of stable partitions of the n-ladder graph. A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The n-ladder has 2n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
(End)

Examples

			Some solutions for n=5:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1
  1 0   1 0   1 2   1 2   1 0   1 0   1 2   1 0   1 0   1 0
  0 1   0 1   0 1   0 1   2 1   0 1   0 1   0 2   2 1   0 1
  1 2   1 0   1 0   1 3   3 0   2 0   3 2   2 1   1 0   1 2
  0 1   0 1   2 1   2 4   1 2   0 1   0 1   0 2   0 1   2 0
		

Crossrefs

Programs

  • Mathematica
    Table[Expand[x*(x-1)*(x^2-3*x+3)^(n-1)]/.x^k_.->BellB[k],{n,20}] (* Gus Wiseman, Mar 01 2019 *)

Formula

It appears that the sequence terms are given by the Dobinski-type formula a(n+1) = (1/e) * Sum_{k>=0} (1+k+k^2)^n/k!. - Peter Bala, Mar 12 2012
Apply x^n -> B(n) to the polynomial chi(n) = x (x - 1) (x^2 - 3 x + 3)^(n - 1), where B = A000110. - Gus Wiseman, Mar 01 2019

A132023 Decimal expansion of Product_{k>=0} 1-1/(2*7^k).

Original entry on oeis.org

4, 5, 8, 7, 6, 6, 7, 2, 6, 6, 9, 9, 7, 6, 8, 9, 8, 5, 0, 2, 0, 0, 0, 5, 1, 5, 3, 3, 6, 9, 7, 4, 3, 7, 2, 1, 7, 8, 2, 5, 4, 6, 6, 8, 8, 7, 1, 4, 7, 3, 1, 8, 7, 0, 0, 7, 8, 2, 4, 4, 0, 1, 3, 8, 5, 0, 6, 9, 9, 7, 4, 4, 0, 3, 2, 6, 5, 9, 3, 0, 3, 6, 5, 2, 3, 7, 8, 1, 7, 1, 0, 9, 0, 4, 0, 5, 8, 4, 7, 5, 9, 8, 2
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4587667266997689850200...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*7^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/7], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_7(n))} floor(n/7^k)*7^k/n.
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^(1/2*(1+floor(log_7(n)))*floor(log_7(n))).
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^A000217(floor(log_7(n))).
Equals 1/2*exp(-Sum_{n>0} 7^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132031(n)/A132031(n+1).
Equals Product_{n>=1} (1 - 1/A109808(n)). - Amiram Eldar, May 08 2023

A324266 a(n) = 2*49^n.

Original entry on oeis.org

2, 98, 4802, 235298, 11529602, 564950498, 27682574402, 1356446145698, 66465861139202, 3256827195820898, 159584532595224002, 7819642097165976098, 383162462761132828802, 18774960675295508611298, 919973073089479921953602, 45078680581384516175726498, 2208855348487841292610598402
Offset: 0

Views

Author

Stefano Spezia, Feb 20 2019

Keywords

Comments

x = A324265(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For A324265(0) = 5 and a(0) = 2, 5^2 + 7 = 32 = 4*2^3.
		

Crossrefs

Cf. A324265 (5*343^n), A000290 (n^2), A000578 (n^3), A109808 (2*7^(n-1)).

Programs

  • GAP
    List([0..20], n->2*49^n);
    
  • Magma
    [2*49^n: n in [0..20]];
    
  • Maple
    a:=n->2*49^n: seq(a(n), n=0..20);
  • Mathematica
    2*49^Range[0,20]
  • PARI
    a(n) = 2*49^n;

Formula

O.g.f.: 2/(1 - 49*x).
E.g.f.: 2*exp(49*x).
a(n) = 49*a(n-1) for n > 0.
a(n) = (49/2)*(A109808(n))^2.

A245807 a(n) = 7^n + 10^n.

Original entry on oeis.org

2, 17, 149, 1343, 12401, 116807, 1117649, 10823543, 105764801, 1040353607, 10282475249, 101977326743, 1013841287201, 10096889010407, 100678223072849, 1004747561509943, 10033232930569601, 100232630513987207, 1001628413597910449, 10011398895185373143
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 7^n+k^n: A034491 (k=1), A074602 (k=2), A074608 (k=3), A074613 (k=4), A074616 (k=5), A074619 (k=6), A109808 (k=7), A074622 (k=8), A074623 (k=9), this sequence (k=10).

Programs

  • Magma
    [7^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,17]; [n le 2 select I[n] else 17*Self(n-1)-70*Self(n-2): n in [1..25]];
  • Mathematica
    Table[(7^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 17 x)/((1 - 7 x) (1 - 10 x)), {x, 0, 40}], x]

Formula

G.f.: (2-17*x)/((1-7*x)*(1-10*x)).
E.g.f.: e^(7*x) + e^(10*x).
a(n) = 17*a(n-1)-70*a(n-2).
a(n) = A000420(n) + A011557(n).

A360922 Array read by antidiagonals: T(m,n) is the number of acyclic orientations in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 4, 14, 4, 8, 98, 98, 8, 16, 686, 2398, 686, 16, 32, 4802, 58670, 58670, 4802, 32, 64, 33614, 1435414, 5015972, 1435414, 33614, 64, 128, 235298, 35118638, 428816558, 428816558, 35118638, 235298, 128, 256, 1647086, 859207558, 36659327366, 128091434266, 36659327366, 859207558, 1647086, 256
Offset: 1

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Examples

			Array begins:
=====================================================
m\n|  1     2        3           4              5 ...
---+-------------------------------------------------
1  |  1     2        4           8             16 ...
2  |  2    14       98         686           4802 ...
3  |  4    98     2398       58670        1435414 ...
4  |  8   686    58670     5015972      428816558 ...
5  | 16  4802  1435414   428816558   128091434266 ...
6  | 32 33614 35118638 36659327366 38261306901842 ...
  ...
		

Crossrefs

Main diagonal is A080690.
Rows 1..2 are A000079(n-1), A109808.
Cf. A116469 (spanning trees), A178435, A207868 (unlabeled colorings).

Formula

T(m,n) = T(n,m).

A324267 a(n) = 11*7^(5*n).

Original entry on oeis.org

11, 184877, 3107227739, 52223176609373, 877714929273732011, 14751754816303613908877, 247932743197614838966495739, 4167005614922312598509893885373, 70034863369999307843155786531464011, 1177075948659578366919919304234315632877, 19783115469121533612823083746266142841763739
Offset: 0

Views

Author

Stefano Spezia, Feb 26 2019

Keywords

Comments

x = a(n) and y = A324266(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(10*n+1) = 4*y^5 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 11 and A324266(0) = 2, 11^2 + 7 = 128 = 4*2^5.
		

Crossrefs

Cf. A324266: 2*49^n; A000290: n^2; A000584: n^5; A109808: 2*7^(n-1).

Programs

  • GAP
    List([0..20], n->11*16807*n);
    
  • Magma
    [11*16807^n: n in [0..20]];
    
  • Maple
    a:=n->11*16807^n: seq(a(n), n=0..20);
  • Mathematica
    11*16807^Range[0,20]
  • PARI
    a(n) = 11*16807^n;

Formula

a(n) = 11*16807^n.
O.g.f.: 11/(1 - 16807*x).
E.g.f.: 11*exp(16807*x).
a(n) = 16807*a(n-1) for n > 0.
a(n) = 11*((7/2)*A109808(n))^5.
Showing 1-7 of 7 results.