cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110035 Row sums of an unsigned characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, 2, 5, 12, 31, 80, 209, 546, 1429, 3740, 9791, 25632, 67105, 175682, 459941, 1204140, 3152479, 8253296, 21607409, 56568930, 148099381, 387729212, 1015088255, 2657535552, 6957518401, 18215019650, 47687540549, 124847601996
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Comments

Rows sums of abs(A110033).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 31*x^4 + 80*x^5 + 209*x^6 + ... - _Michael Somos_, Mar 03 2023
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-3,1},{1,2,5,12},50] (* Harvey P. Dale, May 01 2022 *)
    a[ n_] := With[{F = Fibonacci}, (1 + F[n+1]*F[n+2] + F[n+n])/2]; (* Michael Somos, Mar 03 2023 *)
  • PARI
    {a(n) = my(F = fibonacci); (1 + F(n+1)*F(n+2) + F(n+n))/2}; /* Michael Somos, Mar 03 2023 */

Formula

G.f.: (1-x-x^2)/((1-x^2)(1-3x+x^2));
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4);
a(n) = F(2n) + 1 + Sum_{k=0..n-1} F(k)*F(k+1).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = Sum_{i=0..n} A061646(i).
a(n) = (5 + (-1)^n + 4*A002878(n))/10. (End)
a(n) = A110034(-n) = 1 - A110034(1+n) = A236438(n) + (n mod 2) = (1 + F(n+1)*F(n+2) + F(2*n))/2 for all n in Z. - Michael Somos, Mar 03 2023

A110033 A characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, 0, 3, -8, 1, 0, 0, 9, -21, 1, 0, 0, 0, 24, -55, 1, 0, 0, 0, 0, 64, -144, 1, 0, 0, 0, 0, 0, 168, -377, 1, 0, 0, 0, 0, 0, 0, 441, -987, 1, 0, 0, 0, 0, 0, 0, 0, 1155, -2584, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3025, -6765, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7920, -17711, 1
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Examples

			Rows begin
1;
-1,1;
1,-3,1;
0,3,-8,1;
0,0,9,-21,1;
0,0,0,24,-55,1;
0,0,0,0,64,-144,1;
0,0,0,0,0,168,-377,1;
		

Formula

Form the n X n Hankel matrices F(i+j-1), 1<=i, j<=n for the Fibonacci numbers and take the characteristic polynomials of these matrices. Triangle rows give coefficients of these characteristic polynomials. (Construction described by Michael Somos in A064831). Diagonal is (-1)^n*F(2n+2). Subdiagonal is A064831. Row sums are A110034. The unsigned matrix has row sums A110035.

A206282 a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4.

Original entry on oeis.org

1, 1, -1, -4, -5, 1, 9, 11, -4, -25, -31, 9, 64, 79, -25, -169, -209, 64, 441, 545, -169, -1156, -1429, 441, 3025, 3739, -1156, -7921, -9791, 3025, 20736, 25631, -7921, -54289, -67105, 20736, 142129, 175681, -54289, -372100, -459941, 142129, 974169, 1204139
Offset: 1

Views

Author

Michael Somos, Feb 05 2012

Keywords

Comments

This satisfies the same recurrence as Dana Scott's sequence A048736.

Examples

			G.f. = x + x^2 - x^3 - 4*x^4 - 5*x^5 + x^6 + 9*x^7 + 11*x^8 - 4*x^9 - 25*x^10 + ...
		

Crossrefs

Programs

  • Haskell
    a206282 n = a206282_list !! (n-1)
    a206282_list = 1 : 1 : -1 : -4 :
       zipWith div
         (zipWith (+)
           (zipWith (*) (drop 3 a206282_list)
                        (drop 1 a206282_list))
           (drop 2 a206282_list))
         a206282_list
    -- Same program as in A048736, see comment.
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2))/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x,0,50}], x] (* or *) RecurrenceTable[{a[n] == ( a[n-1]*a[n-3] + a[n-2] )/a[n-4], a[1] == a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,50}] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = my(k = n\3); (-1)^k * if( n%3 == 0, fibonacci( k )^2, n%3 == 1, fibonacci( k+2 )^2, fibonacci( k ) * fibonacci( k+3 ) + fibonacci( k+1 ) * fibonacci( k+2 ))};
    
  • PARI
    x='x+O('x^30); Vec(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4 -2*x^6 +x^8 )) \\ G. C. Greubel, Aug 12 2018
    

Formula

G.f.: x * (1 + x - x^2 - 2*x^3 - 3*x^4 - x^5 - x^6 - x^7) / (1 + 2*x^3 - 2*x^6 - x^9).
a(n) = a(-5 - n) = a(n+2) * a(n-2) - a(n+1) * a(n-1) for all n in Z.
a(3*n) = (-1)^n * F(n)^2, a(3*n + 1) = (-1)^n * F(n + 2)^2 where F = Fibonacci A000045.
a(6*n - 4) = - A110034(2*n), a(6*n - 1) = - A110035(2*n), a(3*n + 2) = (-1)^n * A126116(2*n + 3).

A378277 Denominators in a harmonic triangle, based on products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 2, 3, 10, 15, 2, 3, 10, 24, 40, 2, 3, 10, 24, 65, 104, 2, 3, 10, 24, 65, 168, 273, 2, 3, 10, 24, 65, 168, 442, 714, 2, 3, 10, 24, 65, 168, 442, 1155, 1870, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 4895, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 12816
Offset: 1

Views

Author

Werner Schulte, Nov 21 2024

Keywords

Comments

The harmonic triangle uses the terms of this sequence as denominators, numerators = 1.
The inverse of the harmonic triangle has entries -(Fibonacci(k+1))^2 for 1<=k
Row sums of the harmonic triangle are 1.
Conjecture: Alt. row sums of the harmonic triangle are Fibonacci(n-2) / Fibonacci(n+1), where Fibonacci(-1) = 1.

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\ k :  1  2   3   4   5    6    7     8     9    10     11
===========================================================
   1 :  1
   2 :  2  2
   3 :  2  3   6
   4 :  2  3  10  15
   5 :  2  3  10  24  40
   6 :  2  3  10  24  65  104
   7 :  2  3  10  24  65  168  273
   8 :  2  3  10  24  65  168  442   714
   9 :  2  3  10  24  65  168  442  1155  1870
  10 :  2  3  10  24  65  168  442  1155  3026  4895
  11 :  2  3  10  24  65  168  442  1155  3026  7920  12816
  etc.
		

Crossrefs

Cf. A000045, A110034, A110035, A001654 (main diagonal), A059929 (subdiagonals).

Programs

  • PARI
    T(n,k)=if(k==n,Fibonacci(n)*Fibonacci(n+1),Fibonacci(k)*Fibonacci(k+2))

Formula

T(n, k) = Fibonacci(n) * Fibonacci(n+1) if k = n, and Fibonacci(k) * Fibonacci(k+2) if 1 <= k < n.
Row sums are A110035(n) - 1 = -A110034(n+1).
G.f.: A(t, x) = x*t*(1 + t - x*t^2) / ((1 - t) * (1 + x*t) * (1 - 3*x*t + x^2*t^2)).
Showing 1-4 of 4 results.