A112009 Numbers n with even length such that phi(n)=d_1^d_2*d_3^d_4*...* d_(k-1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.
113724, 116680, 126620, 176453, 236520, 12146841, 12514635, 13334445, 13469331, 13813728, 16473510, 18259344, 20116537, 20119347, 21324832, 23336066, 27923616, 30352728, 34425425, 35424571, 36311184, 37837170, 39171345, 43362816, 45429360, 45449216, 45916416, 46544032, 50713684, 50816880, 61642672, 62193744, 62226711, 62263890, 62288272, 64245272, 64808352, 64832560, 66707233, 66807126, 66827180, 81913446, 84943040
Offset: 1
Examples
27923616 is in the sequence because phi(27923616)=2^7*9^2*3^6*1^6. 11600069 and 23635500 are not members, since 0^0 is undefined.
Programs
-
Mathematica
Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]==Product[ h[[2j-1]]^h[[2j]], {j, k/2}], Print[n]], {n, 30000000}]
Extensions
Edited by N. J. A. Sloane, Apr 02 2009
More terms from Max Alekseyev, Oct 16 2012
Comments