A255494
Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
Offset: 0
Triangle begins:
1;
1, 1; # see A079291
1, 4, 1; # see A110272
1, 13, 13, 1;
1, 38, 130, 38, 1;
1, 105, 1106, 1106, 105, 1;
1, 280, 8575, 26544, 8575, 280, 1;
1, 729, 62475, 567203, 567203, 62475, 729, 1;
1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
-
P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]];
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
-
@CachedFunction
def P(n): return lucas_number1(n, 2, -1)
def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021
A099930
a(n) = Pell(n) * Pell(n-1) * Pell(n-2) / 10.
Original entry on oeis.org
1, 12, 174, 2436, 34307, 482664, 6791772, 95567064, 1344731653, 18921807828, 266250046986, 3746422451772, 52716164405255, 741772724044560, 10437534301224120, 146867252940711408, 2066579075472320521, 29078974309550454492, 409172219409185308518, 5757490046038128779316
Offset: 3
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Index entries for linear recurrences with constant coefficients, signature (12,30,-12,-1).
-
Drop[CoefficientList[Series[x^3/((1+2x-x^2)(1-14x-x^2)),{x,0,20}],x],3] (* or *) LinearRecurrence[{12,30,-12,-1},{1,12,174,2436},20] (* Harvey P. Dale, Feb 26 2012 *)
Original entry on oeis.org
0, 1, 9, 134, 1862, 26251, 369251, 5196060, 73113372, 1028784997, 14476099149, 203694183170, 2866194639170, 40330419190351, 567492063162119, 7985219303802744, 112360562315573112, 1581033091723823881, 22246823846444284881, 313036566941955454910
Offset: 0
Cf.
A110272 (cubes of the Pell numbers).
-
A110272:=func; [&+[A110272(i): i in [0..n]]: n in [0..19]]; // Bruno Berselli, Jun 21 2012
-
LinearRecurrence[{13, 18, -42, 11, 1}, {0, 1, 9, 134, 1862}, 20] (* Bruno Berselli, Jun 21 2012 *)
A110273
a(n) = Pell(n)^3 + Pell(n+1)^3.
Original entry on oeis.org
1, 9, 133, 1853, 26117, 367389, 5169809, 72744121, 1023588937, 14402985777, 202665398173, 2851718540021, 40126725007181, 564625868522949, 7944888884612393, 111793070252410993, 1573047872420021137, 22134463284128711769, 311455533850231631029, 4382511937187348260781
Offset: 0
-
I:=[1,9,133,1853]; [n le 4 select I[n] else 12*Self(n-1) + 30*Self(n-2) - 12*Self(n-3) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 17 2021
-
LinearRecurrence[{12,30,-12,-1},{1,9,133,1853},30] (* Harvey P. Dale, Jan 24 2018 *)
Sum[Fibonacci[Range[0, 30] +j, 2]^3, {j,0,1}] (* G. C. Greubel, Sep 17 2021 *)
-
[lucas_number1(n+1, 2, -1)^3 + lucas_number1(n, 2, -1)^3 for n in (0..30)] # G. C. Greubel, Sep 17 2021
A244352
a(n) = Pell(n)^3 - Pell(n)^2, where Pell(n) is the n-th Pell number (A000129).
Original entry on oeis.org
0, 0, 4, 100, 1584, 23548, 338100, 4798248, 67750848, 954701400, 13441659268, 189185124940, 2662308356400, 37463104912660, 527155118240244, 7417689205890000, 104375121328998144, 1468671237346368048, 20665783224031936900, 290789699203441908148
Offset: 0
a(3) = Pell(3)^3 - Pell(3)^2 = 5^3 - 5^2 = 100.
-
Pell:= func< n | n eq 0 select 0 else Evaluate(DicksonSecond(n-1,-1),2) >;
[Pell(n)^3 - Pell(n)^2: n in [0..40]]; // G. C. Greubel, Aug 20 2022
-
CoefficientList[Series[4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 26 2014 *)
-
pell(n) = round(((1+sqrt(2))^n-(1-sqrt(2))^n)/(2*sqrt(2)))
vector(50, n, pell(n-1)^3-pell(n-1)^2)
-
def Pell(n): return lucas_number1(n,2,-1)
[Pell(n)^3 -Pell(n)^2 for n in (0..40)] # G. C. Greubel, Aug 20 2022
Showing 1-5 of 5 results.
Comments