cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110451 a(n) = n*(4*n^2 + 2*n + 1).

Original entry on oeis.org

0, 7, 42, 129, 292, 555, 942, 1477, 2184, 3087, 4210, 5577, 7212, 9139, 11382, 13965, 16912, 20247, 23994, 28177, 32820, 37947, 43582, 49749, 56472, 63775, 71682, 80217, 89404, 99267, 109830, 121117, 133152, 145959, 159562, 173985, 189252
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

a(n) = A110449(2*n,n), central terms in triangle A110449.
2*a(n) is the sum of the consecutive integers from A000384(n)+1 to A000384(n+1)-1. - Bruno Berselli, Jun 27 2018

Crossrefs

Programs

  • GAP
    List([0..40],n->n*(4*n^2+2*n+1)); # Muniru A Asiru, Jun 27 2018
  • Magma
    [n*(4*n^2+2*n+1): n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
    
  • Maple
    seq(n*(4*n^2+2*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n*(4*n^2 + 2*n + 1), {n, 0, 50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,7,42,129}, 50] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    x='x+O('x^50); Vec((7*x + 14*x^2 + 3*x^3)/(1 - x)^4) \\ G. C. Greubel, Aug 24 2017
    

Formula

From G. C. Greubel, Aug 24 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-1) + 4*a(n-2) - a(n-4).
G.f.: (7*x + 14*x^2 + 3*x^3)/(1 - x)^4.
E.g.f.: x*(7 + 14*x + 4*x^2)*exp(x). (End)