cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052980 Expansion of (1 - x)/(1 - 2*x - x^3).

Original entry on oeis.org

1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) counts permutations of length n which embed into the (infinite) increasing oscillating sequence given by 4,1,6,3,8,5,...,2k+2,2k-1,...; these are also the permutations which avoid {321, 2341, 3412, 4123}. - Vincent Vatter, May 23 2008
a(n) is the top left entry of the n-th power of any of the 3X3 matrices [1, 1, 0; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 0, 1, 0] or [1, 1, 1; 0, 0, 1; 1, 0, 1] or [1, 0, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the number of possible tilings of a 2 X n board, using dominoes and L-shaped trominoes. - Michael Tulskikh, Aug 21 2019
a(n) = A190512(n-1) for n>0. - Greg Dresden, Feb 28 2020

References

  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Crossrefs

See A190512 and A110513 for other versions of this sequence.
Column k=2 of A219987.
Cf. A008998.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-3): n in [1..40]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( (1 - x)/(1 - 2*x - x^3))); // Marius A. Burtea, Feb 14 2020
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z,Z),Z),Sequence(Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 2 x - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
  • PARI
    Vec((1-x)/(1-2*x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

Recurrence: a(0)=1, a(1)=1, a(2)=2; thereafter a(n) = 2*a(n-1)+a(n-3).
a(n) = Sum(1/59*(4+3*_alpha^2+17*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1+2*_Z+_Z^3)).
a(n) = A008998(n) - A008998(n-1). - R. J. Mathar, Feb 04 2014
Let u1 = 2.20556943... denote the real root of x^3-2*x^2-1. There is an explicit constant c1 = 0.460719842... such that for n>0, a(n) = nearest integer to c1*u1^n. - N. J. A. Sloane, Nov 07 2016
a(2n) = a(n)^2 - a(n-1)^2 + (1/2)*(a(n+2) - a(n+1) - a(n))^2. - Greg Dresden and Michael Tulskikh, Aug 20 2019
a(n) = 2^(n-1) + Sum_{i=3..n}(2^(n-i)*a(i-3)). - Greg Dresden, Aug 27 2019
a(n+1) = (Sum_{i >= 0} 2^(n-3i-2)*(4*binomial(n-2i, i) + binomial(n-2i-2, i))). - Michael Tulskikh, Feb 14 2020
a(n) = A008998(n-1) + A008998(n-3). - Michael Tulskikh, Feb 14 2020

A110511 Riordan array (1/(1+x), x(1-x)/(1+x)^2).

Original entry on oeis.org

1, -1, 1, 1, -4, 1, -1, 9, -7, 1, 1, -16, 26, -10, 1, -1, 25, -70, 52, -13, 1, 1, -36, 155, -190, 87, -16, 1, -1, 49, -301, 553, -403, 131, -19, 1, 1, -64, 532, -1372, 1462, -736, 184, -22, 1, -1, 81, -876, 3024, -4446, 3206, -1216, 246, -25, 1, 1, -100, 1365, -6084, 11826, -11584, 6190, -1870, 317, -28, 1, -1, 121, -2035
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Inverse of number triangle A110506. Row sums are A110512. Diagonal sums are A110513. Product of (1/(1+x), x/(1+x)) (inverse binomial transform matrix) and (1, x(1-2x)) (A110509).

Examples

			Rows begin
   1;
  -1,   1;
   1,  -4,   1;
  -1,   9,  -7,   1;
   1, -16,  26, -10,   1;
  -1,  25, -70,  52, -13,   1;
		

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(n - j)*Binomial[n, j]*(-2)^(j - k)*Binomial[k, j - k], {j, 0, n}]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    for(n=0,20, for(k=0,n, print1(sum(j=0,n, (-1)^(n-j)*binomial(n, j)*(-2)^(j-k)*binomial(k, j-k)), ", "))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle: T(n, k) = Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-2)^(j-k)*C(k, j-k).
T(n, k) = Sum_{j=0..n} Sum_{i=0..k} C(k, i)*C(n+k-i-j-1, n-k-i-j)*(-1)^(n-k).
T(n,k) = T(n-1,k-1) - 2*T(n-1,k) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=-1, T(1,1)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Jan 12 2014

A190512 Number of one-sided n-step prudent walks, avoiding single west step only, i.e., two or more consecutive west steps are permitted.

Original entry on oeis.org

1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
Offset: 0

Views

Author

Shanzhen Gao, May 11 2011

Keywords

Examples

			a(2)=5 since there are 5 such walks: WW, NN, EN, NE, EE.
		

Crossrefs

Cf. A110513 (essentially a signed version).
Cf. A052980 (essentially the same sequence).

Programs

  • PARI
    my(x='x+O('x^35)); Vec((1+x^2)/(1-2*x-x^3)) \\ Michel Marcus, Jun 28 2021

Formula

a(n) = A052980(n+1). - R. J. Mathar, May 16 2011
G.f.: (1+x^2)/(1-2*x-x^3).
Showing 1-3 of 3 results.