A296435
Expansion of e.g.f. log(1 + arcsinh(x)).
Original entry on oeis.org
0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0
E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
-
S:= series(ln(1+arcsinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
-
nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
-
Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017
A296438
Expansion of e.g.f. log(1 + arctan(x))*exp(x).
Original entry on oeis.org
0, 1, 1, 0, 0, 13, 5, -336, -56, 18593, -6735, -1598520, 1192664, 205475645, -255011835, -36324220856, 62049925040, 8519764352097, -18835422533375, -2551646722754512, 6927586371061712, 951619735931190157, -3077560879933239899, -432185107142832520576, 1624964470900980885432
Offset: 0
E.g.f.: A(x) = x/1! + x^2/2! + 13*x^5/5! + 5*x^6/6! - 336*x^7/7! - 56*x^8/8! + ...
-
a:=series(log(1+arctan(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; CoefficientList[Series[Log[1 + ArcTan[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + I (Log[1 - I x] - Log[1 + I x])/2] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
-
my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + atan(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017
A331617
E.g.f.: exp(1 / (1 - arctan(x)) - 1).
Original entry on oeis.org
1, 1, 3, 11, 49, 265, 1683, 12035, 95169, 832337, 7998467, 83033403, 922112305, 10978263257, 139956480467, 1889161216179, 26798589518593, 401123509624737, 6346168059440515, 105040097140558699, 1805102151607613361, 32421358229074354601
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[1/(1 - ArcTan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A191700[0] = 1; A191700[n_] := A191700[n] = Sum[Binomial[n, k] If[OddQ[k], (-1)^Boole[IntegerQ[(k + 1)/4]] (k - 1)!, 0] A191700[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A191700[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
-
seq(n)={Vec(serlaplace(exp(1/(1 - atan(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020
A354117
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + arctan(x).
Original entry on oeis.org
1, -2, -2, 8, -16, 176, -832, 384, 8192, 447744, -4228608, -15860736, -398991360, 10938421248, 44581613568, -29064658944, -17762113880064, -18092698632192, -7331825098948608, -64037289416196096, 3154526750647517184, 91791873021766533120, -1278044473427380666368
Offset: 1
-
nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + ArcTan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A296981
Expansion of e.g.f. arctan(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 0, 6, -22, -30, 952, -5656, -9952, 508320, -3874992, -20690208, 833780400, -7697940432, -52230156288, 2467649024640, -24686997151104, -329724479772288, 14493628861307136, -159114034671287040, -2682505451050592256, 126421889770129637376
Offset: 0
arctan(log(1 + x)) = x^1/1! - x^2/2! + 6*x^4/4! - 22*x^5/5! - 30*x^6/6! + ...
Cf.
A001710,
A003703,
A003708,
A009024,
A009454,
A009775,
A010050,
A104150,
A110708,
A296979,
A296980,
A296982.
-
a:=series(arctan(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[ArcTan[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[(I/2) Log[1 - I Log[1 + x]] - (I/2) Log[1 + I Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
A297211
Expansion of e.g.f. log(1 + arctan(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 6, -8, 13, -103, 462, 824, -8239, -147747, 1233518, 12148288, -127674419, -2090702391, 24495009510, 410685350032, -5514147250815, -111860639828131, 1673006899192118, 37306857729115304, -619246417449233555, -15476404474443728487, 281907759055194714206
Offset: 0
log(1 + arctan(x))*exp(-x) = x/1! - 3*x^2/2! + 6*x^3/3! - 8*x^4/4! + 13*x^5/5! - 103*x^6/6! + ...
-
a:=series(log(1+arctan(x))*exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcTan[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + (I/2) (Log[1 - I x] - Log[1 + I x])] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
A296623
Expansion of e.g.f. log(1 + arctan(x)*arctanh(x)) (even powers only).
Original entry on oeis.org
0, 2, -12, 448, -21728, 2380032, -318185472, 69695846400, -18235768762368, 6697099792220160, -2892199532135841792, 1606188416621920911360, -1034069421398404544593920, 810882197441673837894696960, -727447103613537543910242385920, 766865924510666637669136261447680
Offset: 0
log(1 + arctan(x)*arctanh(x)) = 2*x^2/2! - 12*x^4/4! + 448*x^6/6! - 21728*x^8/8! + 2380032*x^10/10! - 318185472*x^12/12! + ...
-
nmax = 15; Table[(CoefficientList[Series[Log[1 + ArcTan[x] ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 15; Table[(CoefficientList[Series[Log[1 + (I/4) (Log[1 - I x] - Log[1 + I x]) (Log[1 + x] - Log[1 - x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Showing 1-7 of 7 results.
Comments