cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055469 Primes of the form k(k+1)/2+1 (i.e., central polygonal numbers, or one more than triangular numbers).

Original entry on oeis.org

2, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, 631, 821, 947, 991, 1129, 1327, 1597, 1831, 2017, 2081, 2347, 2557, 2851, 2927, 3571, 3917, 4561, 4657, 4951, 5051, 5779, 6217, 6329, 8647, 8779, 9181, 9871, 11027, 12721, 13367, 14029, 14197, 14879
Offset: 1

Views

Author

Henry Bottomley, Jun 27 2000

Keywords

Comments

Also primes of the form (n^2 + 7)/8. - Ray Chandler, Oct 08 2005
q=2 and q=5 are the only primes values such that q+1 is a triangular number because 8q+9 is a square for 2 and 5 only. - Benoit Cloitre, Apr 05 2002
n such that A000010(n) = A000217(k). - Giovanni Teofilatto, Jan 29 2010
It is conjectured that this sequence is infinite. - Daniel Forgues, Apr 21 2015

Crossrefs

Programs

  • Mathematica
    Select[Table[(n^2 + 7)/8, {n, 400}], PrimeQ] (* Ray Chandler, Oct 08 2005 *)
    Select[Accumulate[Range[400]]+1,PrimeQ] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    forprime(p=2,10^5, if ( issquare(8*p-7), print1(p, ", "))) \\ Joerg Arndt, Jul 14 2012
    
  • PARI
    list(lim)=my(v=List(),p); forstep(s=3,sqrtint(lim\1*8-7),2, if(isprime(p=(s^2+7)/8), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, May 05 2020

Formula

a(n) = A000124(A067186(n)) = (A110873(n) + 7)/8. - Ray Chandler, Oct 08 2005

A067186 Numbers n such that C(n) = (n^2 + n + 2)/2 is prime.

Original entry on oeis.org

1, 3, 4, 7, 8, 11, 12, 16, 19, 20, 23, 27, 35, 40, 43, 44, 47, 51, 56, 60, 63, 64, 68, 71, 75, 76, 84, 88, 95, 96, 99, 100, 107, 111, 112, 131, 132, 135, 140, 148, 159, 163, 167, 168, 172, 175, 179, 184, 187, 200, 203, 207, 208, 211, 219, 223, 228, 236, 240, 251, 260
Offset: 1

Views

Author

Joseph L. Pe, Feb 19 2002

Keywords

Comments

C(n) gives the maximum number of pieces in which a circular disc can be cut with n slices (A000124). C. Pickover calls the C(n)s "cake integers".

Examples

			C(7) = (7^2 + 7 + 2)/2 = 29, a prime, so 7 is a term of the sequence.
		

References

  • Pickover, C. "Wonders of Numbers", Oxford Univ. Press, 2001; page 158, ch. 65.

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime((n^2 + n + 2) div 2)]; // Vincenzo Librandi, Sep 30 2012
    
  • Mathematica
    Select[ Range[300], PrimeQ[(#^2 + # + 2)/ 2] &]
  • PARI
    is(n)=isprime(n*(n+1)/2+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A110872(n) - 1)/2. - Ray Chandler, Oct 08 2005

Extensions

Edited by Robert G. Wilson v, Feb 19 2002

A110872 Numbers n such that (n^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 9, 15, 17, 23, 25, 33, 39, 41, 47, 55, 71, 81, 87, 89, 95, 103, 113, 121, 127, 129, 137, 143, 151, 153, 169, 177, 191, 193, 199, 201, 215, 223, 225, 263, 265, 271, 281, 297, 319, 327, 335, 337, 345, 351, 359, 369, 375, 401, 407, 415, 417, 423, 439, 447
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A067186(n) + 1 = Sqrt(A110873(n)).

Extensions

Extended by Ray Chandler, Oct 08 2005
Showing 1-3 of 3 results.