cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134460 First differences of A067186.

Original entry on oeis.org

2, 1, 3, 1, 3, 1, 4, 3, 1, 3, 4, 8, 5, 3, 1, 3, 4, 5, 4, 3, 1, 4, 3, 4, 1, 8, 4, 7, 1, 3, 1, 7, 4, 1, 19, 1, 3, 5, 8, 11, 4, 4, 1, 4, 3, 4, 5, 3, 13, 3, 4, 1, 3, 8, 4, 5, 8, 4, 11, 9, 4, 7, 4, 5, 4, 4, 3, 4, 4, 8, 9, 4, 7, 16, 1, 4, 4, 7, 4, 1, 8, 3, 1, 11, 5, 4, 3, 9, 11, 1, 8, 3, 1, 4, 3, 1, 3, 4, 13, 4, 3, 8
Offset: 1

Views

Author

John W. Layman, Oct 26 2007

Keywords

Comments

Conjecture: Except for the first term a(1)=2, this sequence contains no terms of the form 4m+2. (This has been confirmed for the first several thousand terms.)

Crossrefs

A055469 Primes of the form k(k+1)/2+1 (i.e., central polygonal numbers, or one more than triangular numbers).

Original entry on oeis.org

2, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, 631, 821, 947, 991, 1129, 1327, 1597, 1831, 2017, 2081, 2347, 2557, 2851, 2927, 3571, 3917, 4561, 4657, 4951, 5051, 5779, 6217, 6329, 8647, 8779, 9181, 9871, 11027, 12721, 13367, 14029, 14197, 14879
Offset: 1

Views

Author

Henry Bottomley, Jun 27 2000

Keywords

Comments

Also primes of the form (n^2 + 7)/8. - Ray Chandler, Oct 08 2005
q=2 and q=5 are the only primes values such that q+1 is a triangular number because 8q+9 is a square for 2 and 5 only. - Benoit Cloitre, Apr 05 2002
n such that A000010(n) = A000217(k). - Giovanni Teofilatto, Jan 29 2010
It is conjectured that this sequence is infinite. - Daniel Forgues, Apr 21 2015

Crossrefs

Programs

  • Mathematica
    Select[Table[(n^2 + 7)/8, {n, 400}], PrimeQ] (* Ray Chandler, Oct 08 2005 *)
    Select[Accumulate[Range[400]]+1,PrimeQ] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    forprime(p=2,10^5, if ( issquare(8*p-7), print1(p, ", "))) \\ Joerg Arndt, Jul 14 2012
    
  • PARI
    list(lim)=my(v=List(),p); forstep(s=3,sqrtint(lim\1*8-7),2, if(isprime(p=(s^2+7)/8), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, May 05 2020

Formula

a(n) = A000124(A067186(n)) = (A110873(n) + 7)/8. - Ray Chandler, Oct 08 2005

A060371 a(n) = (prime(n) - 1)! + 1.

Original entry on oeis.org

2, 3, 25, 721, 3628801, 479001601, 20922789888001, 6402373705728001, 1124000727777607680001, 304888344611713860501504000001, 265252859812191058636308480000001, 371993326789901217467999448150835200000001
Offset: 1

Views

Author

Jason Earls, Apr 01 2001

Keywords

Comments

If the prime p is in A055469, that is if p = 2, 7, 11, 29, ... = A055469(j) which is valid for the first, 4th, 5th, 10th,.... entry here with j = 1, 2, 3, ..., then a(n) = A052295[A067186(j)] + 1. - R. J. Mathar, Apr 27 2007
It follows from Wilson's theorem that a(n) is divisible by the n-th prime. - Alonso del Arte, Feb 07 2014

Crossrefs

Subsequence of A038507. - Michel Marcus, Oct 17 2017

Programs

  • Magma
    [Factorial(NthPrime(n)-1)+1: n in [1..15]]; // Vincenzo Librandi, Oct 17 2017
  • Mathematica
    Table[(Prime[n] - 1)! + 1, {n, 12}] (* Alonso del Arte, Feb 07 2014 *)
  • PARI
    { n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ Harry J. Smith, Jul 04 2009
    

Extensions

Corrected offset by Alonso del Arte, Feb 07 2014

A129545 Triangular numbers T such that T+1 is a prime.

Original entry on oeis.org

1, 6, 10, 28, 36, 66, 78, 136, 190, 210, 276, 378, 630, 820, 946, 990, 1128, 1326, 1596, 1830, 2016, 2080, 2346, 2556, 2850, 2926, 3570, 3916, 4560, 4656, 4950, 5050, 5778, 6216, 6328, 8646, 8778, 9180, 9870, 11026, 12720, 13366, 14028, 14196, 14878
Offset: 1

Views

Author

Zak Seidov, May 30 2007

Keywords

Comments

The only triangular numbers T such that T-1 is a (positive) prime are 3 and 6.

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[200]],PrimeQ[#+1]&] (* Harvey P. Dale, Nov 08 2011 *)
  • Python
    from sympy import isprime
    def T(n): return n*(n+1)//2
    def ok(T): return isprime(T+1)
    print(list(filter(ok, (T(n) for n in range(175))))) # Michael S. Branicky, Jun 18 2021

Formula

a(n) = A000217(A067186(n)). - R. J. Mathar, Dec 10 2007
a(n) = A055469(n) - 1. - Joerg Arndt, Jun 19 2021

A110872 Numbers n such that (n^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 9, 15, 17, 23, 25, 33, 39, 41, 47, 55, 71, 81, 87, 89, 95, 103, 113, 121, 127, 129, 137, 143, 151, 153, 169, 177, 191, 193, 199, 201, 215, 223, 225, 263, 265, 271, 281, 297, 319, 327, 335, 337, 345, 351, 359, 369, 375, 401, 407, 415, 417, 423, 439, 447
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A067186(n) + 1 = Sqrt(A110873(n)).

Extensions

Extended by Ray Chandler, Oct 08 2005

A110873 Squares of the form 8p - 7, where p is prime.

Original entry on oeis.org

9, 49, 81, 225, 289, 529, 625, 1089, 1521, 1681, 2209, 3025, 5041, 6561, 7569, 7921, 9025, 10609, 12769, 14641, 16129, 16641, 18769, 20449, 22801, 23409, 28561, 31329, 36481, 37249, 39601, 40401, 46225, 49729, 50625, 69169, 70225, 73441, 78961
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[n^2, {n, 300}], PrimeQ[(# + 7)/8] &] (* Ray Chandler, Oct 01 2005 *)
    Select[8#-7&/@Prime[Range[1300]],IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Apr 11 2018 *)
  • PARI
    for(i=1,1000,n=i^2+7;if(n%8==0&&isprime(n/8),print1(n-7,","))) (Klasen)

Formula

a(n) = A110872(n)^2 = 8*A055469(n) - 7.
a(n) = 8*A055469(n)-7.

Extensions

Extended by Lambert Klasen (lambert.klasen(AT)gmx.net) and Ray Chandler, Oct 01 2005

A217755 Numbers n such that ((n^2 + n)/2)^2 + 1 is prime.

Original entry on oeis.org

1, 3, 4, 8, 11, 15, 20, 24, 28, 31, 39, 43, 48, 64, 75, 76, 79, 80, 111, 116, 120, 135, 148, 155, 160, 168, 179, 184, 200, 203, 208, 211, 216, 223, 224, 235, 243, 251, 263, 264, 288, 303, 319, 320, 324, 348, 351, 356, 364, 371, 375, 388, 416, 419, 420, 424, 428, 439, 443, 451, 456, 459
Offset: 1

Views

Author

Luca Brigada Villa, Mar 26 2013

Keywords

Comments

Also, numbers n such that the sum of the first n cubes precedes a prime.

Examples

			1 is in the sequence because ((1^2 + 1)/2)^2 + 1 = 2 and 2 is prime;
3 is in the sequence because ((3^2 + 3)/2)^2 + 1 = 37 and 37 is prime.
		

Crossrefs

Cf. A067186.

Programs

  • Magma
    [n: n in [1..500] | IsPrime(s+1) where s is (n^2+n)^2 div 4]; // Bruno Berselli, Mar 27 2013
  • Mathematica
    Select[Range[400], PrimeQ[((#^2 + #)/2)^2 + 1] &] (* Alonso del Arte, Mar 26 2013 *)
  • PARI
    for(n=1,10^3, if(isprime(((n^2 + n)/2)^2 + 1), print1(n,", "))); /* Joerg Arndt, Mar 27 2013 */
    
Showing 1-7 of 7 results.