A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime.
4, 10, 25, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 169, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 289, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 361, 365, 377, 381, 394, 395, 403, 407, 415, 417
Offset: 1
Keywords
Examples
a(4)=34 because 34 is the 4th semiprime such that 2*34+1=69 is also a semiprime.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..7675 (first 1000 terms from T. D. Noe)
Programs
-
Magma
f:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..500] | f(n) and f(2*n+1)]; // Marius A. Burtea, Jan 04 2019
-
Mathematica
SemiPrimeQ[n_] := (Plus@@Transpose[FactorInteger[n]][[2]]==2); Select[Range[2, 500], SemiPrimeQ[ # ]&&SemiPrimeQ[2#+1]&] (* T. D. Noe, Oct 20 2005 *) fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[445], fQ[ # ] && fQ[2# + 1] &] (* Robert G. Wilson v, Oct 20 2005 *) Flatten@Position[PrimeOmega@{#,1+2*#}&/@Range@1000,{2,2}] (* Hans Rudolf Widmer, Nov 25 2023 *)
-
PARI
isok(n) = (bigomega(n) == 2) && (bigomega(2*n+1) == 2); \\ Michel Marcus, Jan 04 2019
Formula
a(n) = (A176896(n) - 1)/2. - Zak Seidov, Sep 10 2012
Comments