cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A175255 Squares in A111153.

Original entry on oeis.org

4, 25, 169, 289, 361, 529, 961, 2809, 5041, 7921, 12769, 16129, 24649, 26569, 27889, 32761, 38809, 52441, 120409, 139129, 160801, 167281, 175561, 201601, 237169, 253009, 259081, 273529, 292681, 316969, 326041, 332929, 358801, 418609, 564001
Offset: 1

Views

Author

Zak Seidov, Mar 15 2010

Keywords

Comments

All terms == 1 mod 3.

Crossrefs

Formula

a(n) = A175256(n)^2.

A283527 First of three consecutive Sophie Germain semiprimes: n, n+1 and n+2 are all terms of A111153.

Original entry on oeis.org

15117, 17245, 34413, 93453, 143101, 157713, 190621, 208293, 233097, 294301, 323281, 346497, 470341, 501477, 1306113, 1337221, 1346401, 1655853, 1682313, 1774801, 1877613, 1879021, 1933233, 1976041
Offset: 1

Views

Author

Zak Seidov, Mar 09 2017

Keywords

Comments

All terms are 1 mod 4, see A056809.

Crossrefs

Subsequence of A056809 and of A111153. Cf. A001358.

Programs

  • Mathematica
      po[x_] := PrimeOmega[x];   Select[Range[15117, 200000, 2],
    2 == po[#] == po[2*# + 1] ==po[# + 1] == po[2*# + 3] == po[# + 2] ==
    po[2*# + 5] &]
  • PARI
    {bo(x)=bigomega(x)
    forstep(n=15117,2000000,2, if(
    2 == bo(n) && 2 == bo(n+1) && 2 == bo(n+2) && 2 == bo(2*n+1) &&
    2 == bo(2*n+3) && 2 == bo(2*n+5), print1(n",")))}
    
  • PARI
    list(lim)=lim\=1; my(v=List(),x=2*lim+5,u=vectorsmall(x)); forprime(p=2,x\2, forprime(q=2,min(lim\p,p), u[p*q]=1)); forstep(n=15117,lim,4, if(u[n] && u[n+1] && u[n+2] && u[2*n+1] && u[2*n+3] && u[2*n+5], listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Mar 10 2017

A111206 Semi-Sophie Germain semiprimes: semiprimes which are the product of Sophie Germain primes.

Original entry on oeis.org

4, 6, 9, 10, 15, 22, 25, 33, 46, 55, 58, 69, 82, 87, 106, 115, 121, 123, 145, 159, 166, 178, 205, 226, 249, 253, 262, 265, 267, 319, 339, 346, 358, 382, 393, 415, 445, 451, 466, 478, 502, 519, 529, 537, 562, 565, 573, 583, 586, 655, 667, 699, 717, 718, 753, 838
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 24 2005

Keywords

Comments

Define an n-almost Sophie Germain almost-prime to be an n-almost prime all the prime factors of which are Sophie Germain primes. Note the contrast between this terminology and that of Sophie Germain n-almost primes, they are different.

Examples

			a(4) = 10 because 10 is the 4th semiprime both the prime factors of which are Sophie Germain primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=First/@FactorInteger[n];b=a[[1]];k=0;If[Length[a]==2,c=a[[2]];If[ !PrimeQ[2*c+1],k=1]];If[PrimeQ[2*b+1]&&k==0,AppendTo[lst,n]]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 27 2009 *)
    Module[{nn=100,sgp},sgp=Select[Prime[Range[100]],PrimeQ[2#+1]&];Select[ Union[ Times@@@Tuples[sgp,2]],#<=10nn&]] (* Harvey P. Dale, May 08 2019 *)
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\2, if(isprime(2*p+1), listput(u,p))); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017

Extensions

Extended by Ray Chandler, Oct 31 2005

A113432 Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.

Original entry on oeis.org

4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Examples

			a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.

A111173 Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct.

Original entry on oeis.org

52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47.

Examples

			n      k = a(n)           2k + 1
=  ================  ================
1   52 = 2^2 * 13    105 = 3 * 5 * 7
2   76 = 2^2 * 19    153 = 3^2 * 17
3  130 = 2 * 5 * 13  261 = 3^2 * 29
4  171 = 3^2 * 19    343 = 7^3
5  172 = 2^2 * 43    345 = 3 * 5 * 23
6  212 = 2^2 * 53    425 = 5^2 * 17
		

Crossrefs

Programs

  • Magma
    Is3primes:=func; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
  • Mathematica
    fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
  • PARI
    is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

{a(n)} = a(n) is an element of A014612 and 2*a(n)+1 is an element of A014612.

Extensions

Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018

A111176 Sophie Germain 4-almost primes.

Original entry on oeis.org

40, 220, 580, 712, 808, 812, 904, 940, 1062, 1192, 1444, 1592, 1612, 1690, 1812, 1876, 2002, 2152, 2212, 2236, 2254, 2488, 2502, 2562, 2650, 2662, 2788, 3010, 3052, 3064, 3112, 3162, 3208, 3258, 3272, 3352, 3448, 3550, 3580, 3820, 3832, 3892, 3910, 4012
Offset: 1

Views

Author

Jonathan Vos Post, Oct 22 2005

Keywords

Comments

4-almost primes P such that 2*P + 1 are also 4-almost primes. There should also be 4-almost prime chains of length k analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A 4-almost prime chain of length k is a sequence of 4-almost primes a(1) < a(2) < ... < a(k) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., k-1. There are no such chains beginning with integers under 1200.

Examples

			n p 2*p+1
1 40 = 2^3 * 5 81 = 3^4
2 220 = 2^2 * 5 * 11 441 = 3^2 * 7^2
3 580 = 2^2 * 5 * 29 1161 = 3^3 * 43
4 712 = 2^3 * 89 1425 = 3 * 5^2 * 19
5 808 = 2^3 * 101 1617 = 3 * 7^2 * 11
6 812 = 2^2 * 7 * 29 1625 = 5^3 * 13
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],PrimeOmega[#]==PrimeOmega[2#+1]==4&] (* Harvey P. Dale, Nov 09 2011 *)

Formula

{a(n)} = a(n) is an element of A014613 and 2*a(n)+1 is an element of A014613.

Extensions

Extended by Ray Chandler, Oct 22 2005

A111168 Semiprimes n such that 2*n - 1 is also a semiprime.

Original entry on oeis.org

25, 26, 33, 35, 39, 46, 58, 62, 65, 85, 93, 94, 111, 118, 119, 133, 134, 145, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 334, 335, 341, 361, 362, 377, 382, 386, 391, 393, 395, 407, 422
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

Define an m-th degree Tomaszewski n-chain of the first (second) kind and length k to be a sequence of n-almost primes p(1) < p(2) < ... < p(k) such that s(i+1) = m*s(i) +(-) 1 for i = 1, ..., k-1. Notice that a 2nd degree Tomaszewski 1-chain of the first (second) kind is the familiar Cunningham chain of the first (second) kind.

Examples

			n s(n) s*2-1
1 25 = 5^2 49 = 7^2
2 26 = 2 * 13 51 = 3 * 17
3 33 = 3 * 11 65 = 5 * 13
4 35 = 5 * 7 69 = 3 * 23
5 39 = 3 * 13 77 = 7 * 11
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[#]==PrimeOmega[2#-1]==2&]  (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(2*n-1)==2 \\ Charles R Greathouse IV, Jan 31 2017

Formula

{a(n)} = a(n) is an element of A001358 and 2*a(n)-1 is an element of A001358.

Extensions

Extended by Ray Chandler, Oct 22 2005

A111170 Semiprimes S such that 3*S + 1 is also a semiprime.

Original entry on oeis.org

15, 35, 38, 39, 55, 62, 82, 86, 87, 91, 106, 111, 115, 118, 119, 134, 142, 155, 159, 178, 187, 194, 218, 226, 235, 254, 259, 267, 278, 287, 295, 298, 299, 314, 319, 326, 327, 334, 335, 339, 371, 382, 386, 391, 395, 398, 411, 422, 427, 446, 451, 454, 502, 515
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. Define a 3n+1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) + 1 for i = 1, ..., k-1. Length 3: 111, 334, 1003; 142, 427, 1282. Length 4: 35, 106, 319, 958; 86, 259, 778, 2335; 187, 562, 1687, 5062.
a(n) is either an even semiprime 2*k where k is a prime such that 6*k+1 is a semiprime, or an odd semiprime 2*k+1 where 3*k+2 is a prime. - Robert Israel, Dec 10 2024

Examples

			n s(n) 3*s + 1
1 15 = 3 * 5 46 = 2 * 23
2 35 = 5 * 7 106 = 2 * 53
3 38 = 2 * 19 115 = 5 * 23
4 39 = 3 * 13 118 = 2 * 59
5 55 = 5 * 11 166 = 2 * 83
6 62 = 2 * 31 187 = 11 * 17
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(x-> 2=numtheory[bigomega](x), [n, 3*n+1]):
    select(q, [$4..515])[];  # Alois P. Heinz, May 02 2024
    # alternative
    N:= 10^4: # to get all terms < (N-1)/3
    Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
    SP:={seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)}:
    sort(convert(SP intersect map(t -> (t-1)/3, SP), list)); # Robert Israel, Dec 10 2024
  • Mathematica
    Select[Range[515],PrimeOmega[#]==2&&PrimeOmega[3*#+1]==2&] (* James C. McMahon, May 01 2024 *)

Formula

{a(n)} = a(n) is an element of A001358 and 3*a(n)+1 is an element of A001358.

Extensions

Extended by Ray Chandler, Oct 22 2005

A111171 Semiprimes S such that 3*S - 1 is also a semiprime.

Original entry on oeis.org

9, 21, 22, 25, 26, 49, 62, 65, 69, 74, 85, 93, 121, 122, 129, 133, 141, 146, 158, 161, 166, 178, 185, 194, 205, 209, 221, 249, 253, 262, 265, 289, 298, 302, 305, 309, 346, 358, 361, 365, 381, 382, 386, 413, 446, 466, 473, 485, 489, 493, 501, 505, 514, 526, 553
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the second kind and Tomaszewski chains of the second kind. Define a 3n-1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) - 1 for i = 1, ..., k-1. Length 3: 9, 26, 77; 49, 146, 437; 65, 194, 581; 129, 386, 1157; 158, 473, 1418; 187, 562, 1685. Length 4: 74, 221, 662, 1985; 122, 365, 1094, 3281. Length 5: 21, 62, 185, 554, 1661.

Examples

			n s(n) 3 *s -1
1 9 = 3^2 26 = 2 * 13
2 21 = 3 * 7 62 = 2 * 31
3 22 = 2 * 11 65 = 5 * 13
4 25 = 5^2 74 = 2 * 37
5 26 = 2 * 13 77 = 7 * 11
6 49 = 7^2 146 = 2 * 73
		

Crossrefs

Programs

  • Mathematica
    Select[Range[600],PrimeOmega[#]==PrimeOmega[3#-1]==2&] (* Harvey P. Dale, Jun 20 2018 *)

Formula

{a(n)} = a(n) is an element of A001358 and 3*a(n)-1 is an element of A001358.

Extensions

Corrected and extended by Ray Chandler, Oct 22 2005

A117204 Squarefree positive integers k such that 2*k+1 is also squarefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 59, 61, 65, 66, 69, 70, 71, 74, 77, 78, 79, 82, 83, 86, 89, 91, 93, 95, 97, 101, 102, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Leroy Quet, Mar 02 2006

Keywords

Comments

The asymptotic density of this sequence is (3/2)*A065474 = 0.4839511484... (Erdős and Ivić, 1987). - Amiram Eldar, Mar 02 2021

Examples

			10 and 2*10 +1 = 21 are both squarefree, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    sfQ[n_]:=SquareFreeQ[n]&&SquareFreeQ[2n+1]; Select [Range[200],sfQ] (* Harvey P. Dale, Mar 12 2011 *)

Formula

a(n) = (A117203(n) - 1)/2.

Extensions

More terms from Jonathan Vos Post, Mar 03 2006
Corrected and extended by Harvey P. Dale, Mar 12 2011
Showing 1-10 of 27 results. Next