cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime.

Original entry on oeis.org

4, 10, 25, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 169, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 289, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 361, 365, 377, 381, 394, 395, 403, 407, 415, 417
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 19 2005

Keywords

Comments

Define a generalized Sophie Germain n-prime of degree m, p, to be an n-prime (n-almost prime) such that 2p+1 is an m-prime (m-almost prime). For example, p=24 is a Sophie Germain 4-prime of degree 2 because 24 is a 4-prime and 2*24+1=49 is a 2-prime. Then this sequence gives all the Sophie Germain 2-primes of degree 2.

Examples

			a(4)=34 because 34 is the 4th semiprime such that 2*34+1=69 is also a semiprime.
		

Crossrefs

Programs

  • Magma
    f:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..500] | f(n) and f(2*n+1)]; // Marius A. Burtea, Jan 04 2019
    
  • Mathematica
    SemiPrimeQ[n_] := (Plus@@Transpose[FactorInteger[n]][[2]]==2); Select[Range[2, 500], SemiPrimeQ[ # ]&&SemiPrimeQ[2#+1]&] (* T. D. Noe, Oct 20 2005 *)
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[445], fQ[ # ] && fQ[2# + 1] &] (* Robert G. Wilson v, Oct 20 2005 *)
    Flatten@Position[PrimeOmega@{#,1+2*#}&/@Range@1000,{2,2}] (* Hans Rudolf Widmer, Nov 25 2023 *)
  • PARI
    isok(n) = (bigomega(n) == 2) && (bigomega(2*n+1) == 2); \\ Michel Marcus, Jan 04 2019

Formula

a(n) = (A176896(n) - 1)/2. - Zak Seidov, Sep 10 2012

Extensions

Corrected and extended by T. D. Noe, Ray Chandler and Robert G. Wilson v, Oct 20 2005

A111173 Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct.

Original entry on oeis.org

52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47.

Examples

			n      k = a(n)           2k + 1
=  ================  ================
1   52 = 2^2 * 13    105 = 3 * 5 * 7
2   76 = 2^2 * 19    153 = 3^2 * 17
3  130 = 2 * 5 * 13  261 = 3^2 * 29
4  171 = 3^2 * 19    343 = 7^3
5  172 = 2^2 * 43    345 = 3 * 5 * 23
6  212 = 2^2 * 53    425 = 5^2 * 17
		

Crossrefs

Programs

  • Magma
    Is3primes:=func; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
  • Mathematica
    fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
  • PARI
    is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

{a(n)} = a(n) is an element of A014612 and 2*a(n)+1 is an element of A014612.

Extensions

Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018

A111176 Sophie Germain 4-almost primes.

Original entry on oeis.org

40, 220, 580, 712, 808, 812, 904, 940, 1062, 1192, 1444, 1592, 1612, 1690, 1812, 1876, 2002, 2152, 2212, 2236, 2254, 2488, 2502, 2562, 2650, 2662, 2788, 3010, 3052, 3064, 3112, 3162, 3208, 3258, 3272, 3352, 3448, 3550, 3580, 3820, 3832, 3892, 3910, 4012
Offset: 1

Views

Author

Jonathan Vos Post, Oct 22 2005

Keywords

Comments

4-almost primes P such that 2*P + 1 are also 4-almost primes. There should also be 4-almost prime chains of length k analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A 4-almost prime chain of length k is a sequence of 4-almost primes a(1) < a(2) < ... < a(k) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., k-1. There are no such chains beginning with integers under 1200.

Examples

			n p 2*p+1
1 40 = 2^3 * 5 81 = 3^4
2 220 = 2^2 * 5 * 11 441 = 3^2 * 7^2
3 580 = 2^2 * 5 * 29 1161 = 3^3 * 43
4 712 = 2^3 * 89 1425 = 3 * 5^2 * 19
5 808 = 2^3 * 101 1617 = 3 * 7^2 * 11
6 812 = 2^2 * 7 * 29 1625 = 5^3 * 13
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],PrimeOmega[#]==PrimeOmega[2#+1]==4&] (* Harvey P. Dale, Nov 09 2011 *)

Formula

{a(n)} = a(n) is an element of A014613 and 2*a(n)+1 is an element of A014613.

Extensions

Extended by Ray Chandler, Oct 22 2005

A111168 Semiprimes n such that 2*n - 1 is also a semiprime.

Original entry on oeis.org

25, 26, 33, 35, 39, 46, 58, 62, 65, 85, 93, 94, 111, 118, 119, 133, 134, 145, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 334, 335, 341, 361, 362, 377, 382, 386, 391, 393, 395, 407, 422
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

Define an m-th degree Tomaszewski n-chain of the first (second) kind and length k to be a sequence of n-almost primes p(1) < p(2) < ... < p(k) such that s(i+1) = m*s(i) +(-) 1 for i = 1, ..., k-1. Notice that a 2nd degree Tomaszewski 1-chain of the first (second) kind is the familiar Cunningham chain of the first (second) kind.

Examples

			n s(n) s*2-1
1 25 = 5^2 49 = 7^2
2 26 = 2 * 13 51 = 3 * 17
3 33 = 3 * 11 65 = 5 * 13
4 35 = 5 * 7 69 = 3 * 23
5 39 = 3 * 13 77 = 7 * 11
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[#]==PrimeOmega[2#-1]==2&]  (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(2*n-1)==2 \\ Charles R Greathouse IV, Jan 31 2017

Formula

{a(n)} = a(n) is an element of A001358 and 2*a(n)-1 is an element of A001358.

Extensions

Extended by Ray Chandler, Oct 22 2005

A111170 Semiprimes S such that 3*S + 1 is also a semiprime.

Original entry on oeis.org

15, 35, 38, 39, 55, 62, 82, 86, 87, 91, 106, 111, 115, 118, 119, 134, 142, 155, 159, 178, 187, 194, 218, 226, 235, 254, 259, 267, 278, 287, 295, 298, 299, 314, 319, 326, 327, 334, 335, 339, 371, 382, 386, 391, 395, 398, 411, 422, 427, 446, 451, 454, 502, 515
Offset: 1

Views

Author

Jonathan Vos Post, Oct 21 2005

Keywords

Comments

This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. Define a 3n+1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) + 1 for i = 1, ..., k-1. Length 3: 111, 334, 1003; 142, 427, 1282. Length 4: 35, 106, 319, 958; 86, 259, 778, 2335; 187, 562, 1687, 5062.
a(n) is either an even semiprime 2*k where k is a prime such that 6*k+1 is a semiprime, or an odd semiprime 2*k+1 where 3*k+2 is a prime. - Robert Israel, Dec 10 2024

Examples

			n s(n) 3*s + 1
1 15 = 3 * 5 46 = 2 * 23
2 35 = 5 * 7 106 = 2 * 53
3 38 = 2 * 19 115 = 5 * 23
4 39 = 3 * 13 118 = 2 * 59
5 55 = 5 * 11 166 = 2 * 83
6 62 = 2 * 31 187 = 11 * 17
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(x-> 2=numtheory[bigomega](x), [n, 3*n+1]):
    select(q, [$4..515])[];  # Alois P. Heinz, May 02 2024
    # alternative
    N:= 10^4: # to get all terms < (N-1)/3
    Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
    SP:={seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)}:
    sort(convert(SP intersect map(t -> (t-1)/3, SP), list)); # Robert Israel, Dec 10 2024
  • Mathematica
    Select[Range[515],PrimeOmega[#]==2&&PrimeOmega[3*#+1]==2&] (* James C. McMahon, May 01 2024 *)

Formula

{a(n)} = a(n) is an element of A001358 and 3*a(n)+1 is an element of A001358.

Extensions

Extended by Ray Chandler, Oct 22 2005
Showing 1-5 of 5 results.