cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111163 Triangular numbers that are sums of two consecutive primes.

Original entry on oeis.org

36, 78, 120, 210, 276, 300, 630, 946, 990, 1770, 1830, 2556, 2850, 3240, 3570, 4278, 4950, 5460, 8256, 9870, 10878, 11026, 12090, 12720, 20100, 20910, 23436, 26796, 31626, 34980, 41616, 43660, 46056, 55278, 56616, 57630, 59340, 66066, 73920
Offset: 1

Views

Author

Joseph L. Pe, Oct 20 2005

Keywords

Comments

Intersection of A000217 and A001043. - Michel Marcus, May 18 2015

Examples

			36 = 8(8+1)/2 = 17 + 19. Therefore 36 belongs to the sequence.
		

Crossrefs

Cf. A000217 (triangular numbers), A001043 (sums of consecutive primes).

Programs

  • Maple
    P:=proc()local i,a,b,c;c:=1;for i from 1 to 1200000 do;
    a:=ithprime(i)+ithprime(i+1);b:=(-1+(sqrt(8*a+1)))/2;
    if  b=floor(b) then lprint(c,a);c:=c+1;fi; od;end:P();
    # K. D. Bajpai, Jun 30 2013
  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1], {n, 4500}], IntegerQ[Sqrt[1 + 8# ]] &] (* Ray Chandler, Oct 22 2005 *)
    t = {}; n = 0; While[Length[t] < 100, n++; s = Prime[n] + Prime[n + 1]; If[TriangularQ[s], AppendTo[t, s]]]; t (* T. D. Noe, Jun 30 2013 *)
  • PARI
    {p=2; ct=0; while(ct<66, q=nextprime(p+1); s=p+q; if( issquare(8*s+1), print1(s, ", "); ct++); p=q)} \\ Klaus Brockhaus, Oct 22 2005
    
  • Python
    from sympy import nextprime as np
    from sympy import prevprime as pp
    n=1
    t=n*(n+1)//2
    while t>0:
        if t%2==0 and t>3:
            i=t//2
            p=pp(i); q=np(p)
            if p+q==t :
                print(t)
        n=n+1
        t=n*(n+1)//2 # Abhiram R Devesh, May 17 2015
    
  • Python
    from sympy import prevprime,nextprime,isprime
    A111163_list = [n*(n+1)//2 for n in range(3,10**4) if not isprime(n*(n+1)//4) and prevprime(n*(n+1)//4)+nextprime(n*(n+1)//4) == n*(n+1)//2] # Chai Wah Wu, Feb 11 2018

Extensions

Extended by Ray Chandler and Klaus Brockhaus, Oct 22 2005