A111163 Triangular numbers that are sums of two consecutive primes.
36, 78, 120, 210, 276, 300, 630, 946, 990, 1770, 1830, 2556, 2850, 3240, 3570, 4278, 4950, 5460, 8256, 9870, 10878, 11026, 12090, 12720, 20100, 20910, 23436, 26796, 31626, 34980, 41616, 43660, 46056, 55278, 56616, 57630, 59340, 66066, 73920
Offset: 1
Keywords
Examples
36 = 8(8+1)/2 = 17 + 19. Therefore 36 belongs to the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..472 from K. D. Bajpai, n = 473..1000 from T. D. Noe)
Programs
-
Maple
P:=proc()local i,a,b,c;c:=1;for i from 1 to 1200000 do; a:=ithprime(i)+ithprime(i+1);b:=(-1+(sqrt(8*a+1)))/2; if b=floor(b) then lprint(c,a);c:=c+1;fi; od;end:P(); # K. D. Bajpai, Jun 30 2013
-
Mathematica
Select[Table[Prime[n] + Prime[n + 1], {n, 4500}], IntegerQ[Sqrt[1 + 8# ]] &] (* Ray Chandler, Oct 22 2005 *) t = {}; n = 0; While[Length[t] < 100, n++; s = Prime[n] + Prime[n + 1]; If[TriangularQ[s], AppendTo[t, s]]]; t (* T. D. Noe, Jun 30 2013 *)
-
PARI
{p=2; ct=0; while(ct<66, q=nextprime(p+1); s=p+q; if( issquare(8*s+1), print1(s, ", "); ct++); p=q)} \\ Klaus Brockhaus, Oct 22 2005
-
Python
from sympy import nextprime as np from sympy import prevprime as pp n=1 t=n*(n+1)//2 while t>0: if t%2==0 and t>3: i=t//2 p=pp(i); q=np(p) if p+q==t : print(t) n=n+1 t=n*(n+1)//2 # Abhiram R Devesh, May 17 2015
-
Python
from sympy import prevprime,nextprime,isprime A111163_list = [n*(n+1)//2 for n in range(3,10**4) if not isprime(n*(n+1)//4) and prevprime(n*(n+1)//4)+nextprime(n*(n+1)//4) == n*(n+1)//2] # Chai Wah Wu, Feb 11 2018
Extensions
Extended by Ray Chandler and Klaus Brockhaus, Oct 22 2005
Comments