A111596 The matrix inverse of the unsigned Lah numbers A271703.
1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0
Examples
Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1, together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore 9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3. From _Wolfdieter Lang_, Apr 28 2014: (Start) The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 0: 1 1: 0 1 2: 0 -2 1 3: 0 6 -6 1 4: 0 -24 36 -12 1 5: 0 120 -240 120 -20 1 6: 0 -720 1800 -1200 300 -30 1 7: 0 5040 -15120 12600 -4200 630 -42 1 ... For more rows see the link. (End)
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Wolfdieter Lang, The first 11 rows of the triangle.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 20.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv preprint arXiv:1105.3044 [math.CO], 2011, also J. Int. Seq. 14 (2011) 11.6.7.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers; Generators, Inversion, and Matrix, Binomial, and Integral Transforms; Lagrange a la Lah
- A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Mathoverflow, Pochhammer symbol of a differential, and hypergeometric polynomials, a question posed by Emilio Pisanty and answered by Tom Copeland, 2012.
- J. Taylor, Counting words with Laguerre polynomials, DMTCS Proc., Vol. AS, 2013, p. 1131-1142. [_Tom Copeland_, Jan 08 2016] [Broken link]
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96. [_Tom Copeland_, Dec 20 2018]
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *) T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *) rows = 9; t = Table[(-1)^(n+1) n!, {n, 1, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
PARI
{T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
-
Sage
lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k) A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)] for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
-
Sage
# uses[inverse_bell_transform from A264429] def A111596_matrix(dim): fact = [factorial(n) for n in (1..dim)] return inverse_bell_transform(dim, fact) A111596_matrix(10) # Peter Luschny, Dec 20 2015
Formula
E.g.f. m-th column: ((x/(1+x))^m)/m!, m>=0.
E.g.f. for row polynomials p(n, x) is exp(x*y/(1+y)).
a(n, m) = ((-1)^(n-m))*|A008297(n, m)| = ((-1)^(n-m))*(n!/m!)*binomial(n-1, m-1), n>=m>=1; a(0, 0)=1; else 0.
a(n, m) = -(n-1+m)*a(n-1, m) + a(n-1, m-1), n>=m>=0, a(n, -1):=0, a(0, 0)=1; a(n, m)=0 if n
|a(n,m)| = Sum_{k=m..n} |S1(n,k)|*S2(k,m), n>=0. S2(n,m):=A048993. S1(n,m):=A048994. - Wolfdieter Lang, May 04 2007
From Tom Copeland, Nov 21 2011: (Start)
For this Lah triangle, the n-th row polynomial is given umbrally by
(-1)^n n! binomial(-Bell.(-x),n), where Bell_n(-x)= exp(x)(xd/dx)^n exp(-x), the n-th Bell / Touchard / exponential polynomial with neg. arg., (cf. A008277). E.g., 2! binomial(-Bell.(-x),2) = -Bell.(-x)*(-Bell.(-x)-1) = Bell_2(-x)+Bell_1(-x) = -2x+x^2.
A Dobinski relation is (-1)^n n! binomial(-Bell.(-x),n)= (-1)^n n! e^x Sum_{j>=0} (-1)^j binomial(-j,n)x^j/j!= n! e^x Sum_{j>=0} (-1)^j binomial(j-1+n,n)x^j/j!. See the Copeland link for the relation to inverse Mellin transform. (End)
The n-th row polynomial is (-1/x)^n e^x (x^2*D_x)^n e^(-x). - Tom Copeland, Oct 29 2012
Let f(.,x)^n = f(n,x) = x!/(x-n)!, the falling factorial,and r(.,x)^n = r(n,x) = (x-1+n)!/(x-1)!, the rising factorial, then the Lah polynomials, Lah(n,t)= n!*Sum{k=1..n} binomial(n-1,k-1)(-t)^k/k! (extra sign factor on odd rows), give the transform Lah(n,-f(.,x))= r(n,x), and Lah(n,r(.,x))= (-1)^n * f(n,x). - Tom Copeland, Oct 04 2014
|T(n,k)| = Sum_{j=0..2*(n-k)} A254881(n-k,j)*k^j/(n-k)!. Note that A254883 is constructed analogously from A254882. - Peter Luschny, Feb 10 2015
The T(n,k) are the inverse Bell transform of [1!,2!,3!,...] and |T(n,k)| are the Bell transform of [1!,2!,3!,...]. See A264428 for the definition of the Bell transform and A264429 for the definition of the inverse Bell transform. - Peter Luschny, Dec 20 2015
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates a shifted, signed Narayana matrix A001263. - Tom Copeland, Sep 23 2020
Extensions
New name using a comment from Wolfdieter Lang by Peter Luschny, May 10 2021
A156992 Triangle T(n,k) = n!*binomial(n-1, k-1) for 1 <= k <= n, read by rows.
1, 2, 2, 6, 12, 6, 24, 72, 72, 24, 120, 480, 720, 480, 120, 720, 3600, 7200, 7200, 3600, 720, 5040, 30240, 75600, 100800, 75600, 30240, 5040, 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320, 362880, 2903040, 10160640, 20321280, 25401600, 20321280, 10160640, 2903040, 362880
Offset: 1
Comments
Partition {1,2,...,n} into m subsets, arrange (linearly order) the elements within each subset, then arrange the subsets. - Geoffrey Critzer, Mar 05 2010
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n different books in a k-shelf bookcase leaving no shelf empty.
There are n! ways to arrange the books in one long line. With ni denoting the number of books for shelf i, we have n = n1 + n2 + ... + nk. Since the number of compositions of n with k summands is binomial(n-1,k-1), we obtain T(n,k) = n!*binomial(n-1,k-1) for the number of ways to arrange the n books on the k shelves.
Equivalently, T(n,k) is the number of ways to stack n different alphabet blocks into k labeled stacks.
Also, T(n,k) is the number of injective functions f:[n]->[n+k] such that (i) the pre-image of (n+j) exists for j=1..k and (ii) f has no fixed points, that is, for all x, f(x) does not equal x.
T(n,k) is the number of labeled, rooted forests that have (i) exactly k roots, (ii) each root labeled larger than any nonroot, (iii) each root with exactly one child node, (iv) n non-root nodes, and (v) at most one child node for each node in the forest.
(End)
Essentially, the triangle given by (2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 29 2011
T(n,j+k) = Sum_{i=j..n-k} binomial(n,i)*T(i,j)*T(n-i,k). - Dennis P. Walsh, Nov 29 2011
Examples
The triangle starts: 1; 2, 2; 6, 12, 6; 24, 72, 72, 24; 120, 480, 720, 480, 120; 720, 3600, 7200, 7200, 3600, 720; 5040, 30240, 75600, 100800, 75600, 30240, 5040; 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320; From _Dennis P. Walsh_, Nov 26 2011: (Start) T(3,2) = 12 since there are 12 ways to arrange books b1, b2, and b3 on shelves <shelf1><shelf2>: <b1><b2,b3>, <b1><b3,b2>, <b2><b1,b3>, <b2><b3,b1>, <b3><b1,b2>, <b3><b2,b1>, <b2,b3><b1>, <b3,b2><b1>, <b1,b3><b2>, <b3,b1><b2>, <b1,b2><b3>, <b2,b1><b3>. (End)
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
Crossrefs
Programs
-
Magma
[Factorial(n)*Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, May 10 2021
-
Maple
seq(seq(n!*binomial(n-1,k-1),k=1..n),n=1..10); # Dennis P. Walsh, Nov 26 2011 with(PolynomialTools): p := (n,x) -> (n+1)!*hypergeom([-n],[],-x); seq(CoefficientList(simplify(p(n,x)),x),n=0..5); # Peter Luschny, Apr 08 2015
-
Mathematica
Table[n!*Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten
-
Sage
flatten([[factorial(n)*binomial(n-1,k-1) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, May 10 2021
Formula
E.g.f. for column k is (x/(1-x))^k. - Geoffrey Critzer, Mar 05 2010
Coefficient triangle of the polynomials p(n,x) = (n+1)!*hypergeom([-n],[],-x). - Peter Luschny, Apr 08 2015
A111598 Lah numbers: a(n) = n!*binomial(n-1,7)/8!.
1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000, 100919250432000, 3088129063219200, 96012739965542400, 3040403432242176000, 98228418580131840000, 3241537813144350720000
Offset: 8
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
Links
- G. C. Greubel, Table of n, a(n) for n = 8..440
Crossrefs
Programs
-
Magma
[Factorial(n-8)*Binomial(n,8)*Binomial(n-1,7): n in [8..35]]; // G. C. Greubel, May 10 2021
-
Mathematica
Table[(n-8)!*Binomial[n-1,7]*Binomial[n,8], {n,8,35}] (* G. C. Greubel, May 10 2021 *)
-
Sage
[factorial(n-8)*binomial(n,8)*binomial(n-1,7) for n in (8..35)] # G. C. Greubel, May 10 2021
Formula
E.g.f.: ((x/(1-x))^8)/8!.
a(n) = (n!/8!)*binomial(n-1, 8-1).
If we define f(n,i,x) = Sum_{k=i..n}(Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,8,-8), (n>=8). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=8} 1/a(n) = 61096*(gamma - Ei(1)) + 54544*e - 338732/5, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=8} (-1)^n/a(n) = 2107448*(gamma - Ei(-1)) - 1257760/e - 6080436/5, where Ei(-1) = -A099285. (End)
Comments