cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A328475 Convert the primorial base expansion of n into its prime product form, then divide by the largest primorial which divides that product: a(n) = A111701(A276086(n)).

Original entry on oeis.org

1, 1, 3, 1, 9, 3, 5, 5, 15, 1, 45, 3, 25, 25, 75, 5, 225, 15, 125, 125, 375, 25, 1125, 75, 625, 625, 1875, 125, 5625, 375, 7, 7, 21, 7, 63, 21, 35, 35, 105, 1, 315, 3, 175, 175, 525, 5, 1575, 15, 875, 875, 2625, 25, 7875, 75, 4375, 4375, 13125, 125, 39375, 375, 49, 49, 147, 49, 441, 147, 245, 245, 735, 7, 2205, 21, 1225, 1225, 3675, 35, 11025, 105
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Crossrefs

Cf. A002110, A053589, A111701, A276086, A328476, A328399 (rgs-transform).
Cf. A143293 (indices of 1's after a(0)=1).

Programs

  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328475(n) = A111701(A276086(n));

Formula

a(n) = A111701(A276086(n)).

A276147 a(2n+1) = 2n+1, a(2n) = A053669(2n) * a(A111701(2n)).

Original entry on oeis.org

1, 3, 3, 9, 5, 5, 7, 27, 9, 15, 11, 15, 13, 21, 15, 81, 17, 15, 19, 45, 21, 33, 23, 45, 25, 39, 27, 63, 29, 7, 31, 243, 33, 51, 35, 25, 37, 57, 39, 135, 41, 35, 43, 99, 45, 69, 47, 135, 49, 75, 51, 117, 53, 45, 55, 189, 57, 87, 59, 21, 61, 93, 63, 729, 65, 55, 67, 153, 69, 105, 71, 75, 73, 111, 75, 171, 77, 65, 79, 405, 81, 123, 83, 105, 85, 129
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2016

Keywords

Crossrefs

Cf. A276148 (the even bisection).
Cf. also A276086.

Programs

Formula

If n is odd, a(n) = n, and when even, a(n) = A053669(n) * a(A111701(n)).
Other identities. For all n >= 0:
a(2^n) = 3^n.

A114562 The first occurrence of n in A111701.

Original entry on oeis.org

1, 4, 3, 8, 5, 36, 7, 16, 9, 20, 11, 72, 13, 28, 15, 32, 17, 108, 19, 40, 21, 44, 23, 144, 25, 52, 27, 56, 29, 900, 31, 64, 33, 68, 35, 216, 37, 76, 39, 80, 41, 252, 43, 88, 45, 92, 47, 288, 49, 100, 51, 104, 53, 324, 55, 112, 57, 116, 59, 1800, 61, 124, 63, 128, 65, 396, 67
Offset: 1

Views

Author

Robert G. Wilson v, Feb 04 2006

Keywords

Crossrefs

Complement of this sequence A095300.

Programs

  • Mathematica
    f[n_] := Block[{m = n, k = 1}, While[ IntegerQ[ m/Prime@k], m = m/Prime@k; k++ ]; m]; g[n_] := Block[{k = 1}, While[f@k != n, k++ ]; k]; Array[g, 67]

Formula

a(2n-1) = 2n-1; a(2n) = k*4n for some k>0, if 2n == 0 (mod 3) then k = 3, if 2n ==0 (15 mod) k = 3*5, if 2n ==0 (105 mod) k = 3*5*7, if 2n ==0 (1155 mod) k = 3*5*7*11, etc.
a(n) = n*A053589(n). - David A. Corneth, Mar 30 2021

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A053589 Greatest primorial number (A002110) which divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000

Keywords

Examples

			a(30) = 30 because 30=2*3*5, a(15) = 1 because 15=3*5.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1)..a(N)
    P:= 1: p:= 1:
    A:= Vector(N,1):
    do
      p:= nextprime(p);
      P:= P*p;
      if P > N then break fi;
      A[[seq(i,i=P..N,P)]]:= P;
    od:
    convert(A,list); # Robert Israel, Aug 30 2016
  • Mathematica
    Table[k = 1; While[Divisible[n, Times @@ Prime@ Range@ k], k++]; Times @@ Prime@ Range[k - 1], {n, 120}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    a(n)=my(f=factor(n), r = 1, k = 1, p); while(k<=matsize(f)[1], p=prime(k); if(f[k,1]!=p,return(r));r*=p; k++) ; r
    a(n) = my(r = 1, p = 2); while(n/p==n\p, r*=p; p=nextprime(p+1));r
    \\ list of all terms up to n#.
    lista(n) = my(l = List([1]),k,s=1); forprime(i=2,n, for(j=1,i-1, for(k=1,s, listput(l,l[k]))); l[#l]*=i; s=#l); l \\ David A. Corneth, Aug 30 2016
    
  • PARI
    a(n)=my(s=1); forprime(p=2,, if(n%p, return(s), s *= p)) \\ Charles R Greathouse IV, Sep 07 2016
  • Scheme
    (define (A053589 n) (A002110 (A276084 n))) ;; Antti Karttunen, Aug 30 2016
    

Formula

From Antti Karttunen, Aug 30 2016: (Start)
a(n) = A002110(A276084(n)).
a(n) = n/A111701(n).
A276157(n) = A260188(n)/a(n).
(End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 02 2000

A076934 Smallest integer of the form n/k!.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 2, 13, 7, 15, 8, 17, 3, 19, 10, 21, 11, 23, 1, 25, 13, 27, 14, 29, 5, 31, 16, 33, 17, 35, 6, 37, 19, 39, 20, 41, 7, 43, 22, 45, 23, 47, 2, 49, 25, 51, 26, 53, 9, 55, 28, 57, 29, 59, 10, 61, 31, 63, 32, 65, 11, 67, 34, 69, 35, 71
Offset: 1

Views

Author

Amarnath Murthy, Oct 19 2002

Keywords

Comments

Equivalently, n divided by the largest factorial divisor of n.
Also, the smallest r such that n/r is a factorial number.
Positions of 1's are the factorial numbers A000142. Is every positive integer in this sequence? - Gus Wiseman, May 15 2019
Let m = A055874(n), the largest integer such that 1,2,...,m divides n. Then a(n*m!) = n since m+1 does not divide n, showing that every integer is part of the sequence. - Etienne Dupuis, Sep 19 2020

Crossrefs

Programs

  • Mathematica
    Table[n/Max@@Intersection[Divisors[n],Array[Factorial,n]],{n,100}] (* Gus Wiseman, May 15 2019 *)
    a[n_] := Module[{k=1}, While[Divisible[n, k!], k++]; n/(k-1)!]; Array[a, 100] (* Amiram Eldar, Dec 25 2023 *)
  • PARI
    first(n) = {my(res = [1..n]); for(i = 2, oo, k = i!; if(k <= n, for(j = 1, n\k, res[j*k] = j ) , return(res) ) ) } \\ David A. Corneth, Sep 19 2020

Formula

From Amiram Eldar, Dec 25 2023: (Start)
a(n) = n/A055881(n)!.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = BesselI(2, 2) = 0.688948... (A229020). (End)

Extensions

More terms from David A. Corneth, Sep 19 2020

A276151 n minus the greatest primorial number (A002110) which divides n: a(n) = n - A053589(n).

Original entry on oeis.org

0, 0, 2, 2, 4, 0, 6, 6, 8, 8, 10, 6, 12, 12, 14, 14, 16, 12, 18, 18, 20, 20, 22, 18, 24, 24, 26, 26, 28, 0, 30, 30, 32, 32, 34, 30, 36, 36, 38, 38, 40, 36, 42, 42, 44, 44, 46, 42, 48, 48, 50, 50, 52, 48, 54, 54, 56, 56, 58, 30, 60, 60, 62, 62, 64, 60, 66, 66, 68, 68, 70, 66, 72, 72, 74, 74, 76, 72, 78, 78, 80, 80, 82, 78, 84, 84, 86, 86, 88, 60, 90, 90, 92
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2016

Keywords

Comments

Subtract one (in primorial base representation A049345) from the least significant nonzero digit of n, then convert back to decimal.

Crossrefs

Cf. A002110 (positions of zeros), A032742, A049345, A053589, A111701, A276084, A276085, A276086.

Programs

  • Mathematica
    Table[If[n == 1, 0, n - Times @@ Prime@ Flatten@ Position[TakeWhile[#, # > 0 &], 1] &@ Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> 1 &, f]]@ FactorInteger@ n], {n, 93}] (* or *)
    Table[n - If[OddQ@ n, 1, Function[p, Product[Prime@ k, {k, #[[p]]}]][LengthWhile[Differences@ #, # == 1 &] + 1] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 93}] (* Michael De Vlieger, Aug 26 2016 *)
  • Python
    from sympy import nextprime, primepi, primorial
    def a002110(n): return 1 if n<1 else primorial(n)
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def a276084(n): return primepi(a053669(n)) - 1
    def a(n): return n - a002110(a276084(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 23 2017
  • Scheme
    (define (A276151 n) (- n (A053589 n)))
    

Formula

a(n) = n - A053589(n) = n - A002110(A276084(n)).
a(n) = A276085(A032742(A276086(n))). - Antti Karttunen, May 11 2017

A328461 a(n) = A276156(n) / A002110(A007814(n)).

Original entry on oeis.org

1, 1, 3, 1, 7, 4, 9, 1, 31, 16, 33, 6, 37, 19, 39, 1, 211, 106, 213, 36, 217, 109, 219, 8, 241, 121, 243, 41, 247, 124, 249, 1, 2311, 1156, 2313, 386, 2317, 1159, 2319, 78, 2341, 1171, 2343, 391, 2347, 1174, 2349, 12, 2521, 1261, 2523, 421, 2527, 1264, 2529, 85, 2551, 1276, 2553, 426, 2557, 1279, 2559, 1, 30031, 15016, 30033, 5006
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

A276156(n) converts the binary expansion of n to a number whose primorial base representation has the same digits of 0's and 1's, thus each one of its terms is a unique sum of distinct primorial numbers. In this sequence that sum is then divided by the largest primorial that divides it, which only depends on the position of the least significant 1-bit in the binary expansion of the original n, that is, the 2-adic valuation of n.

Crossrefs

Cf. A328462 (bisection, also row 1 of array A328464 which shows the same information in tabular form).

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328461(n) = (A276156(n)/A002110(valuation(n,2)));

Formula

a(n) = A276156(n) / A002110(A007814(n)).
a(n) = A111701(A276156(n)).

A331188 Primorial inflation of A052126(n), where A052126(n) = n/(largest prime dividing n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 6, 2, 1, 4, 1, 2, 6, 8, 1, 12, 1, 4, 6, 2, 1, 8, 30, 2, 36, 4, 1, 12, 1, 16, 6, 2, 30, 24, 1, 2, 6, 8, 1, 12, 1, 4, 36, 2, 1, 16, 210, 60, 6, 4, 1, 72, 30, 8, 6, 2, 1, 24, 1, 2, 36, 32, 30, 12, 1, 4, 6, 60, 1, 48, 1, 2, 180, 4, 210, 12, 1, 16, 216, 2, 1, 24, 30, 2, 6, 8, 1, 72, 210, 4, 6, 2, 30, 32
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Comments

The primorial inflation of n, A108951(n), divided by its largest squarefree divisor, which is also its largest primorial divisor.

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A331188(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^(f[i, 2]-(#f~==i))));

Formula

a(n) = A108951(A052126(n)).
a(n) = A003557(A108951(n)).
a(n) = A111701(A108951(n)) = A108951(n) / A002110(A061395(n)).
Other identities. For all >= 1:
A000005(a(n)) = A329382(n) = A005361(A108951(n)).
a(n) mod A117366(n) = A329348(n).
Showing 1-10 of 18 results. Next