cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236258 Decimal expansion of 2 + 21/4*(4/11)^(4/3).

Original entry on oeis.org

3, 3, 6, 2, 6, 4, 3, 9, 0, 5, 9, 6, 1, 4, 3, 3, 7, 8, 0, 3, 7, 3, 6, 2, 7, 2, 5, 7, 0, 0, 1, 4, 4, 4, 1, 9, 9, 9, 4, 6, 0, 6, 6, 1, 3, 6, 3, 0, 6, 3, 4, 5, 4, 0, 0, 4, 7, 5, 2, 8, 7, 4, 3, 5, 7, 9, 7, 8, 4, 0, 5, 5, 3, 4, 9, 2, 9, 1, 7, 6, 2, 5, 9, 7, 5, 2, 7, 7, 0, 1, 2, 5, 9, 7, 9, 6, 6, 5, 0, 9, 6, 5, 5, 7, 9
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 21 2014

Keywords

Comments

Evolution of the effective number of relativistic degrees of freedom contributing to energy density, g(*), can be seen on a graph as a function of temperature. At the energy scales below 0.1 MeV, g(*) is equal to this constant (in the Standard Model and in the minimal extension of Standard Model).

Examples

			3.362643905961433780373627257001444199946066136306345400475287435797840...
		

References

  • Benjamin Bederson, More Things in Heaven and Earth: A Celebration of Physics at the Millennium, Springer-Verlag, New York, 1999, p. 272.
  • J. C. Niemeyer and J. W. Truran, Type la Supernovae: Theory and Cosmology, Cambridge University Press, 2000, p. 107.

Crossrefs

Cf. A111728.

Programs

  • Magma
    n:=2+21/4*(RealField(105)!4/11)^(4/3); Reverse(Intseq(Floor(10^104*n)));
    
  • Maple
    Digits:=100: evalf(2+21/4*(4/11)^(4/3)); # Wesley Ivan Hurt, Oct 05 2014
  • Mathematica
    RealDigits[N[2 + 21/4*(4/11)^(4/3), 105]][[1]]
  • PARI
    default(realprecision, 105); x=2+21/4*(4/11)^(4/3); for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

A225357 Decimal expansion of (4/7)*(43/57)^(4/3).

Original entry on oeis.org

3, 9, 2, 4, 2, 2, 0, 6, 4, 1, 6, 0, 8, 3, 2, 7, 3, 2, 3, 4, 0, 8, 7, 9, 4, 2, 0, 3, 6, 1, 2, 6, 4, 4, 4, 1, 3, 7, 8, 2, 4, 0, 8, 8, 5, 5, 1, 1, 1, 3, 3, 9, 2, 5, 6, 2, 8, 4, 8, 8, 6, 5, 4, 9, 9, 5, 4, 8, 1, 9, 9, 0, 2, 7, 3, 3, 1, 4, 8, 7, 2, 7, 0, 0, 1, 6, 0, 8, 5, 8, 7, 3, 5, 2, 9, 8, 5, 0, 1, 0, 6, 9, 3, 6, 2
Offset: 0

Views

Author

Omar E. Pol, May 28 2013

Keywords

Comments

Steven Weinberg suggested that the contribution from Goldstone bosons to the effective number of neutrino species present in the era before recombination would be (4/7)*(43/57)^(4/3).

Examples

			0.3924220641608327323408794203612644413782408855111339...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(4/7)*(43/57)^(4/3), 10, 110][[1]] (* T. D. Noe, Jun 03 2013 *)
  • Sage
    numerical_approx((4/7)*(43/57)^(4/3), digits=115) # G. C. Greubel, Mar 19 2022

Formula

Equals decimal expansion of 172*(43/57)^(1/3)/399.

A383267 Decimal expansion of (4/11)^(1/3).

Original entry on oeis.org

7, 1, 3, 7, 6, 5, 8, 5, 5, 5, 0, 3, 6, 0, 8, 1, 7, 0, 6, 7, 1, 8, 9, 9, 9, 9, 1, 7, 6, 2, 6, 6, 1, 2, 4, 7, 5, 9, 0, 7, 9, 6, 5, 4, 7, 5, 8, 9, 0, 3, 8, 0, 6, 6, 9, 1, 5, 6, 2, 6, 7, 5, 2, 0, 8, 4, 5, 8, 3, 1, 4, 7, 0, 6, 7, 7, 1, 8, 7, 5, 6, 4, 6, 3, 2, 4, 0, 3, 3, 9, 9, 3, 2, 2, 6, 8, 1, 7, 1, 7, 2, 4, 4, 6, 4
Offset: 0

Views

Author

Arkadiusz Wesolowski, Apr 21 2025

Keywords

Comments

In the standard cosmology, the temperature of the free-streaming neutrinos which formed the cosmic neutrino background is (4/11)^(1/3) of the relic photon temperature after the electron-positron annihilation in the early universe (assuming that all electrons and positrons annihilated into photons).

Examples

			0.713765855503608170671899991762661247590796547589038066915626752084583...
		

References

  • E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, Redwood City, CA, 1990, p. 503 Appendix A.
  • R. E. Lopez, S. Dodelson, A. Heckler and M. S. Turner, Precision detection of the cosmic neutrino background, Physical Review Letters 82 (1999) 3952-3955, p. 3952.
  • Steven Weinberg, Gravitation and Cosmology Principles and Applications of the General Theory of Relativity, John Wiley, New York, 1972, p. 537.

Crossrefs

Cf. A111728.

Programs

  • Magma
    SetDefaultRealField(RealField(106)); n:=(4/11)^(1/3); Reverse(Intseq(Floor(10^105*n)));
    
  • Mathematica
    RealDigits[(4/11)^(1/3),10,105][[1]] (* Stefano Spezia, Apr 25 2025 *)
  • PARI
    (4/11)^(1/3)

Formula

Equals 1/A111728 = A005480/A010583.
Showing 1-3 of 3 results.