cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112373 a(n+2) = (a(n+1)^3 + a(n+1)^2)/a(n) with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 2, 12, 936, 68408496, 342022190843338960032, 584861200495456320274313200204390612579749188443599552
Offset: 0

Views

Author

Andrew Hone, Dec 02 2005

Keywords

Comments

As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) = A104457.
The Laurent property is satisfied by any second-order recurrence of the form a(n+2)=f(a(n+1))/a(n) where f is a polynomial of the form f(x)=x^m*p(x) with m a positive integer >= 2 and p arbitrary. In that case a(0)=a(1)=1 generates a sequence of integers and the ratios a(n+1)/a(n) and a(n+1)*a(n-1)/a(n)^2 are integers for all n. - Andrew Hone, Dec 12 2005
Also denominators of Sum_{k=0..n} 1/a(k) with numerators = A259644. - Reinhard Zumkeller, Jul 02 2015
The next term (a(8)) has 141 digits. - Harvey P. Dale, Apr 05 2019

Crossrefs

Programs

  • Haskell
    a112373 n = a112373_list !! n
    a112373_list = 1 : 1 : zipWith (\u v -> (u^3 + u^2) `div` v)
                                   (tail a112373_list) a112373_list
    -- Reinhard Zumkeller, Jul 02 2015
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else (Self(n-1)^3+Self(n-1)^2)/Self(n-2): n in [1..10]]; // Vincenzo Librandi, Jul 02 2015
    
  • Maple
    a[0]:=1; a[1]:=1; f(x):=x^3+x^2; for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od; s[3]:=ln(2^2*3); s[4]:=ln(2^3*3^2*13); for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2));
    # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962...
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^3 + a[n - 1]^2)/a[n - 2], a[0] == a[1] == 1}, a, {n, 0, 7}] (* Michael De Vlieger, Jul 02 2015 *)
    nxt[{a_,b_}]:={b,(b^3+b^2)/a}; NestList[nxt,{1,1},8][[All,1]] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    {a(n) = my(a=self()); if(n<0, a(1-n), n<2, 1, a(n-1)^2 * (1 + a(n-1)) / a(n-2))}; /* Michael Somos, Apr 19 2017 */

Formula

a(n+1) / a(n) = A114552(n), a(n) = a(1-n) for all n in Z. - Michael Somos, Apr 19 2017
Sum_{n>=0} 1/a(n) = A114550. - Amiram Eldar, Nov 13 2020