cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A114550 Decimal expansion of the constant Sum_{n>=0} 1/A112373(n), where the partial quotients of the continued fraction A114551 satisfy A114551(2n) = A112373(n) and A114551(2n+1) = A112373(n+1)/A112373(n).

Original entry on oeis.org

2, 5, 8, 4, 4, 0, 1, 7, 2, 4, 0, 1, 9, 7, 7, 6, 7, 2, 4, 8, 1, 2, 0, 7, 6, 1, 4, 7, 1, 5, 3, 3, 3, 1, 3, 4, 2, 1, 1, 2, 3, 8, 2, 0, 9, 0, 4, 6, 7, 9, 6, 9, 0, 0, 0, 3, 1, 3, 4, 3, 8, 5, 8, 3, 9, 6, 7, 5, 4, 4, 8, 2, 9, 8, 9, 1, 8, 6, 7, 9, 6, 3, 6, 1, 4, 0, 8, 8, 7, 4, 6, 9, 7, 7, 8, 0, 1, 8, 6, 9, 6, 4, 2, 7, 2
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2005

Keywords

Comments

A112373 is defined by the recurrence: let b(n) = A112373(n), then
b(n) =(b(n-1)^3 + b(n-1)^2)/b(n-2) for n>=2 with b(0)=b(1)=1.
Thus the sum of unit fractions 1/A112373(n) converges rapidly.

Examples

			2.584401724019776724812076147153331342112382090467969...
= Sum_{n>=0} 1/A112373(n) = 1/1 +1/1 +1/2 +1/12 +1/936 +1/68408496 +...
= [2;1,1,2,2,6,12,78,936,73086,68408496,...] (continued fraction).
		

Crossrefs

Cf. A112373, A114551 (continued fraction), A114552.

Programs

  • Mathematica
    dm = 5; digits = 105;
    b[n_] := b[n] = If[n < 2, 1, (b[n - 1]^3 + b[n - 1]^2)/b[n - 2]];
    s[m_] := s[m] = N[Sum[1/b[n], {n, 0, m}], digits + 5];
    s[m = dm];
    s[m += dm];
    While[RealDigits[s[m]] != RealDigits[s[m - dm]], m += dm];
    RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Sep 30 2019 *)
    c[0]=2; c[1] = c[2] = 1; c[n_] := c[n] = c[n-1] c[n-2] + Mod[n, 2] c[n-2];
    RealDigits[FromContinuedFraction[c /@ Range[0, 14]], 10, 105][[1]] (* Jean-François Alcover, Oct 01 2019 *)

A114551 Continued fraction expansion of the constant (A114550) equal to Sum_{n>=0} 1/A112373(n) such that the partial quotients satisfy a(2n) = A112373(n) for n > 0 and a(2n+1) = A112373(n+1)/A112373(n) for n >= 0.

Original entry on oeis.org

2, 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496, 4999703411742, 342022190843338960032, 1710009514450915230711940280907486, 584861200495456320274313200204390612579749188443599552
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2005

Keywords

Comments

A112373 is defined by the recurrence: let b(n) = A112373(n), then
b(n) = (b(n-1)^3 + b(n-1)^2)/b(n-2) for n >= 2 with b(0)=b(1)=1.

Examples

			2.584401724019776724812076147153331342112382090467969...
= Sum_{n>=0} 1/A112373(n) = 1/1 + 1/1 + 1/2 + 1/12 + 1/936 + 1/68408496 + ...
= [2;1,1,2,2,6,12,78,936,73086,68408496,...] (continued fraction).
The recurrence of partial quotients is demonstrated by:
(odd-index) a(7) = 78 = a(6)*a(5) + a(5) = 12*6 + 6;
(even-index) a(8) = 936 = a(7)*a(6) = 78*12.
		

Crossrefs

Cf. A112373, A114550 (constant), A114552 (bisection).

Programs

  • Mathematica
    a[0] = 2; a[1] = a[2] = 1;
    a[n_] := a[n] = a[n-1] a[n-2] + Mod[n, 2] a[n-2];
    a /@ Range[0, 14] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    a(n)=if(n<0,0,if(n<3,[2,1,1][n+1],a(n-1)*a(n-2)+(n%2)*a(n-2)))

Formula

a(2n) = a(2n-1)*a(2n-2) for n>=2, a(2n+1) = a(2n)*a(2n-1) + a(2n-1) for n>=1, with a(0)=2, a(1)=a(2)=1. - Jeffrey Shallit

A114552 Odd-indexed bisection of A114551, which is the continued fraction expansion of Sum_{n>=0} 1/A112373(n); also, a(n) = A112373(n+1)/A112373(n) for n>=0.

Original entry on oeis.org

1, 2, 6, 78, 73086, 4999703411742, 1710009514450915230711940280907486, 1000118217480414644596377710149364954622541926875237885435586055466747491994623223953758
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2005

Keywords

Comments

A112373 is defined by the recurrence: let b(n) = A112373(n), then
b(n) =(b(n-1)^3 + b(n-1)^2)/b(n-2) for n>=2 with b(0)=b(1)=1.
The next term 58499...45086 has 228 digits and is too large to include.

Examples

			a(5) = 4999703411742 = 73086*(1 + 1*2*6*78*73086).
a(5) = a(4)*(1 - a(4) + a(4)^2/a(3)) = 73086*(1 - 73086 + 73086^2/78).
		

Crossrefs

Cf. A112373, A114550 (constant), A114551 (continued fraction).

Programs

  • PARI
    a(n)=if(n==0,1,if(n==1,2,a(n-1)*(1-a(n-1)+a(n-1)^2/a(n-2))))

Formula

a(n) = a(n-1)*(1 + a(0)*a(1)*a(2)*...*a(n-1)) for n>=1, with a(0)=1.
a(n) = a(n-1)*(1 - a(n-1) + a(n-1)^2/a(n-2)) for n>=2, with a(0)=1, a(1)=2.

Extensions

a(7) corrected by Georg Fischer, Aug 26 2022

A259644 Numerators of sum(1/A112373(k): k=0..n), denominators = A112373.

Original entry on oeis.org

1, 2, 5, 31, 2419, 176795035, 883922739668546300971, 1511516294872733607299090320742127160367108420362968907
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 02 2015

Keywords

Examples

			Sum(1/A112373(k)) = 1, 2, 5/2, 31/12, 2419/936, 176795035/68408496, ...
		

Crossrefs

Cf. A112373.

Programs

  • Haskell
    import Data.Ratio (numerator)
    a259644 n = a259644_list !! n
    a259644_list = map numerator $
                   scanl1 (+) $ map (recip . fromIntegral) a112373_list
  • Mathematica
    (* b = A112373 *)
    b[n_] := b[n] = If[n < 2, 1, (b[n-1]^3 + b[n-1]^2)/b[n-2]];
    a[n_] := Sum[1/b[k], {k, 0, n}] // Numerator;
    Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Dec 15 2018 *)

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Views

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A270121 Denominators in a perturbed Engel series.

Original entry on oeis.org

7, 112, 403200, 1755760043520000, 53695136666462381094317154204367872000000
Offset: 1

Views

Author

Andrew Hone, Mar 11 2016

Keywords

Comments

The sum of the series 6/a(1)+1/a(2)+1/a(3)+... is a transcendental number, and has a continued fraction expansion whose coefficients are given explicitly in terms of the sequence a(n) and the ratios a(n+1)/a(n).

Crossrefs

Programs

  • Mathematica
    a[1] = 7; a[2] = 112;
    a[n_] := a[n] = (a[n-1]^2 (1+(n-1)a[n-1]))/a[n-2];
    Array[a, 5] (* Jean-François Alcover, Dec 16 2018 *)

Formula

The sequence is generated by taking a(n+1)=b(n-1)*a(n)*(1+n*a(n)), b(n)=a(n+1)/a(n) for n>=1 with initial values a(1)=7,b(0)=2. Alternatively, if a(1)=7,a(2)=112 are given then a(n+1)*a(n-1)=a(n)^2*(1+n*a(n)) for n>=2.
Sum_{n>=1} 1/a(n) = -5/7 + A270137. - Amiram Eldar, Nov 20 2020

A112449 a(n+2) = (a(n+1)^3 + a(n+1))/a(n) with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 2, 10, 505, 12878813, 4229958765311886322, 5876687051603582015287706866081267480733704277890
Offset: 0

Views

Author

Andrew Hone, Dec 12 2005

Keywords

Comments

A second-order recurrence with the Laurent property. This property is satisfied by any second-order recurrence of the form a(n+2) = f(a(n+1))/a(n) with f being a polynomial of the form f(x) = x*p(x) where p is a polynomial of degree d with integer coefficients such that p(0)=1 and p has the reciprocal property x^d*p(1/x) = p(x). Hence if a(0) = a(1) = 1 then a(n) is an integer for all n.
As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) or about 0.962 (A202543).

Crossrefs

Programs

  • Maple
    a[0]:=1; a[1]:=1; f(x):=x^3+x;
    for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od;
    s[3]:=ln(10); s[4]:=ln(505);
    for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-2*s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2));
    # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962...
    f:=proc(n) option remember; local i,j,k,t1,t2,t3; if n <= 1 then RETURN(1); fi; (f(n-1)^3+f(n-1))/f(n-2); end;
    # N. J. A. Sloane
  • Mathematica
    nxt[{a_,b_}]:={b,(b^3+b)/a}; NestList[nxt,{1,1},10][[All,1]] (* Harvey P. Dale, Jun 26 2017 *)
  • Ruby
    def A(l, m, n)
      a = Array.new(2 * m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(:*) + a[m] ** l
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A112449(n)
      A(3, 1, n)
    end # Seiichi Manyama, Nov 20 2016

Formula

a(1-n) = a(n). - Seiichi Manyama, Nov 20 2016

A270137 Decimal expansion of the constant 6/A270121(1) + Sum_{n>=2} 1/A270121(n).

Original entry on oeis.org

0, 8, 6, 6, 0, 7, 3, 9, 0, 8, 7, 3, 0, 1, 5, 9, 2, 9, 9, 7, 1, 2, 6, 4, 1, 4, 0, 6, 8, 5, 8, 4, 8, 0, 6, 4, 2, 8, 6, 6, 3, 1, 1, 5, 2, 3, 8, 6, 2, 7, 3, 2, 1, 1, 6, 0, 0, 9, 7, 3, 3, 8, 6, 5, 9, 3, 2, 8, 1, 9, 3, 5, 3, 8, 1, 8, 9, 1, 4, 0, 6, 7, 4, 4, 5, 4, 6
Offset: 1

Views

Author

Andrew Hone, Mar 11 2016

Keywords

Comments

A270121 is defined by the following recurrence: if A270121(n)=x(n) then x(n+1)*x(n-1)=x(n)^2*(1+n*x(n)) for n>=1, with x(1)=7, x(2)=112; and for A270124, if A270124(n)=y(n) then y(0)=2 and y(n)=x(n+1)/x(n) for n>=1. Both of these sequences appear in the continued fraction expansion of this number, which is transcendental.

Examples

			0.86607390873015929971... = 6/A270121(1) + Sum_{n>=2} 1/A270121(n) = 6/7 + 1/112 + 1/403200 + 1/1755760043520000 + ... = [0; 1, 6, 2, 7, 32, 112, 10800, 403200, 17418254400, ...] = [0; 1, 6, A270124(0), A270121(1), 2*A270124(1), A270121(2), 3*A270124(2), A270121(3), 4*A270124(3), ...] (continued fraction).
		

Crossrefs

Formula

The continued fraction expansion takes the form
[0; 1, 6, A270124(0), A270121(1), ..., n*A270124(n-1), A270121(n), (n+1)*A270124(n), A270121(n+1), ...].

Extensions

More terms from Jon E. Schoenfield, Nov 12 2016

A270138 Continued fraction expansion of the constant 6/A270121(1)+Sum_{n>=2}1/A270121(n).

Original entry on oeis.org

0, 1, 6, 2, 7, 32, 112, 10800, 403200, 17418254400, 1755760043520000
Offset: 0

Views

Author

Andrew Hone, Mar 11 2016

Keywords

Comments

A270121 is defined by the following recurrence: if A270121(n)=x(n) then x(n+1)*x(n-1)=x(n)^2*(1+n*x(n)) for n>=1, with x(1)=7, x(2)=112; and for A270124, if A270124(n)=y(n) then y(0)=2 and y(n)=x(n+1)/x(n) for n>=1. Both of these sequences appear in this continued fraction expansion, which defines a transcendental number.

Examples

			6/A270121(1)+Sum_{n>=2}1/A270121(n)=6/7+1/112+1/403200+1/1755760043520000+...
=[0;1,6,2,7,32,112,10800,403200,17418254400,...]
=[0;1,6,A270124(0),A270121(1),2*A270124(1),A270121(2),3*A270124(2),A270121(3),4*A270124(3),...] (continued fraction).
		

Crossrefs

Formula

a(2*n+1) = n*A270124(n-1), a(2*n+2) = A270121(n) for n>=1.
Showing 1-9 of 9 results.