cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112540 Numbers m such that (15m-4, 15m-2, 15m+2, 15m+4) is a prime quadruple.

Original entry on oeis.org

1, 7, 13, 55, 99, 125, 139, 217, 231, 377, 629, 867, 1043, 1049, 1071, 1203, 1261, 1295, 1401, 1485, 1687, 2115, 2323, 2919, 3423, 3689, 4199, 4481, 4633, 4815, 5151, 5313, 5403, 5515, 5921, 6523, 6609, 6741, 7323, 7769, 7953, 8147, 9031, 9611, 10485, 11047
Offset: 1

Views

Author

Karsten Meyer, Dec 16 2005

Keywords

Comments

Also (4p + 16)/60 such that (p, p+2, p+6 and p+8) is a prime quadruple for p >= 11. - Michel Lagneau, Jul 02 2012
The density of these four-prime groups is approximately equal to (log x)^-3.45 (but not (log x)^-4). - Xueshi Gao, Jun 01 2014
All of the terms of this sequence are either 1, 7 or 13 modulo 14. - Rodolfo Ruiz-Huidobro, Dec 27 2019
From Eric Snyder, Jun 23 2021: (Start)
Building on the comment of R. Ruiz-Huidobro above, all terms of the sequence are congruent to one of {-1, 0 ,1} (mod 7). The appearance of mod 14 stems from the fact that all entries in this list must be odd. Equivalently, a(n) cannot be +- 2 or +- 3 (mod 7). This can be generalized for all larger primes:
All primes p >= 7 can be expressed as 15k +- q in a least absolute residue system, with q in {2, 4} if k is odd, and q in {1,7} if k is even.
For all primes 15k +- q >= 7, four residues +-r, +-s (mod p) exist such that, if for any p >= 7, [(m == +- r (mod p) or m == +- s (mod p)), and (m != k)], then m is not in this sequence. For the different values of p = 15k +- q, the values of +-r and +-s are as follows:
For p = 15k +- 1 (k even), r = +- 2k, s = +- 4k
For p = 15k +- 2 (k odd), r = +- k, s = +- 2k
For p = 15k + 4 (k odd), r = +- k, s = +- (7k + 2)
For p = 15k - 4 (k odd), r = +- k, s = +- (7k - 2)
For p = 15k + 7 (k even), r = +- (4k + 2), s = +- (8k + 4)
For p = 15k - 7 (k even), r = +- (4k - 2), s = +- (8k - 4)
These can be used to create an Eratosthenes-like sieve for the prime decades. (End)

Examples

			m = 7 yields the quadruple (15*7 - 4 = 101, 15*7 - 2 = 103, 15*7 + 2 = 107, 15*7 + 4 = 109), so 7 is a term of the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^4] | IsPrime(15*n-4) and IsPrime(15*n-2) and IsPrime(15*n+2) and IsPrime(15*n+4)]; // Vincenzo Librandi, Dec 28 2015
    
  • Maple
    A112540:=n->`if`(isprime(15*n-4) and isprime(15*n-2) and isprime(15*n+2) and isprime(15*n+4),n,NULL); seq(A112540(n), n=1..20000); # Wesley Ivan Hurt, Jul 26 2014
  • Mathematica
    Select[Range[6610], PrimeQ[15# - 4] && PrimeQ[15# - 2] && PrimeQ[15# + 2] && PrimeQ[15# + 4]&] (* T. D. Noe, Nov 16 2006 *)
  • PARI
    for(n=1, 1e4, if(isprime(15*n-4) && isprime(15*n-2) && isprime(15*n+2) && isprime(15*n+4), print1(n, ", "))) \\ Felix Fröhlich, Jul 26 2014
    
  • Perl
    use ntheory ":all"; say for map { (4*$+16)/60 } sieve_prime_cluster(11,15*10000, 2,6,8); # _Dana Jacobsen, Dec 15 2015
    
  • Python
    from sympy import isprime
    def ok(m): return all(isprime(15*m+k) for k in [-4, -2, 2, 4])
    print(list(filter(ok, range(11111)))) # Michael S. Branicky, Jun 24 2021

Extensions

Corrected by T. D. Noe, Nov 16 2006