A112540 Numbers m such that (15m-4, 15m-2, 15m+2, 15m+4) is a prime quadruple.
1, 7, 13, 55, 99, 125, 139, 217, 231, 377, 629, 867, 1043, 1049, 1071, 1203, 1261, 1295, 1401, 1485, 1687, 2115, 2323, 2919, 3423, 3689, 4199, 4481, 4633, 4815, 5151, 5313, 5403, 5515, 5921, 6523, 6609, 6741, 7323, 7769, 7953, 8147, 9031, 9611, 10485, 11047
Offset: 1
Examples
m = 7 yields the quadruple (15*7 - 4 = 101, 15*7 - 2 = 103, 15*7 + 2 = 107, 15*7 + 4 = 109), so 7 is a term of the sequence.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10000
- Eric Snyder, An Eratosthenean Sieve for the Prime Decades
Programs
-
Magma
[n: n in [0..2*10^4] | IsPrime(15*n-4) and IsPrime(15*n-2) and IsPrime(15*n+2) and IsPrime(15*n+4)]; // Vincenzo Librandi, Dec 28 2015
-
Maple
A112540:=n->`if`(isprime(15*n-4) and isprime(15*n-2) and isprime(15*n+2) and isprime(15*n+4),n,NULL); seq(A112540(n), n=1..20000); # Wesley Ivan Hurt, Jul 26 2014
-
Mathematica
Select[Range[6610], PrimeQ[15# - 4] && PrimeQ[15# - 2] && PrimeQ[15# + 2] && PrimeQ[15# + 4]&] (* T. D. Noe, Nov 16 2006 *)
-
PARI
for(n=1, 1e4, if(isprime(15*n-4) && isprime(15*n-2) && isprime(15*n+2) && isprime(15*n+4), print1(n, ", "))) \\ Felix Fröhlich, Jul 26 2014
-
Perl
use ntheory ":all"; say for map { (4*$+16)/60 } sieve_prime_cluster(11,15*10000, 2,6,8); # _Dana Jacobsen, Dec 15 2015
-
Python
from sympy import isprime def ok(m): return all(isprime(15*m+k) for k in [-4, -2, 2, 4]) print(list(filter(ok, range(11111)))) # Michael S. Branicky, Jun 24 2021
Extensions
Corrected by T. D. Noe, Nov 16 2006
Comments