A145039 Duplicate of A112633.
3, 7, 19, 31, 107, 127, 607, 1279, 2203, 4423, 86243, 110503, 216091, 756839, 1257787, 20996011, 24036583, 25964951
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 720] == 32 &] (* Amiram Eldar, Oct 19 2024 *)
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 127, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a
Select[MersennePrimeExponent[Range[48]], Mod[#, 4] != 3 &] (* Amiram Eldar, Oct 18 2024 *)
is(n)=n%4 < 3 && isprime(n) && isprime(2^n-1) \\ Charles R Greathouse IV, Nov 28 2016
Select[MersennePrimeExponent[Range[47]], PowerMod[2, #, 6!] == 272 &] (* Amiram Eldar, Mar 22 2020 *)
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 607, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a (*Artur Jasinski*)
Select[Range[0,30000], PrimeQ[(1+I)^#+I, GaussianIntegers->True]&]
A000043(45) = 37156667 is congruent to 3 mod 4, so 45 is in this sequence. A000043(46) = 42643801 is congruent to 1 mod 4, so 46 is not in this sequence.
Select[Range@ 45, Mod[MersennePrimeExponent@ #, 4] == 3 &] (* Michael De Vlieger, Jul 22 2018 *)
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 5! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 120] == 32 &] (* Amiram Eldar, Oct 19 2024 *)
isok(p) = isprime(p) && isprime(q=2^p-1) && ((q % 120)==31); \\ Michel Marcus, Jan 06 2018
Comments