cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112968 a(n) = Sum_{i+j=n} mu(i)*Omega(j), with mu=A008683 and Omega=A001222.

Original entry on oeis.org

0, 0, 1, 0, 0, -2, -2, -2, -2, -2, -6, -2, -4, -2, -7, -1, -5, 0, -7, -3, -9, 1, -11, 2, -7, 1, -12, 1, -11, 7, -8, -5, -8, -1, -18, 3, -10, 1, -13, 1, -7, 13, -12, -2, -13, 6, -16, 3, -11, 3, -15, -4, -16, 13, -15, -4, -15, 4, -17, 11, -14, 4, -13, 7, -12, 15, -17, -5, -15, 16, -13, 3, -12, 3, -20, 3, -27, 19, -20, -3, -11, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Examples

			a(5) = mu(1)*Omega(4)+mu(2)*Omega(3)+mu(3)*Omega(2)+mu(4)*Omega(1) = 1*2 - 1*1 - 1*1 + 0*1 = 0.
		

Crossrefs

Programs

Extensions

Corrected by N. J. A. Sloane, Mar 01 2006

A318366 a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Comments

Dirichlet convolution of A001222 with itself.

Examples

			24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - _David A. Corneth_, Jan 12 2019
		

Crossrefs

Cf. A000005, A001222, A008578 (positions of 0's), A069264, A070288, A112967, A317938, A322375.

Programs

  • Maple
    f:= proc(n) local F,G,t,x;
       F:= map(t -> t[2], ifactors(n)[2]);
       G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)),x);
      (convert(F,`+`)-1)*D(G)(1) - (D@@2)(G)(1);
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 17 2019
  • Mathematica
    Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
  • PARI
    a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
    
  • PARI
    a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019

Formula

a(A025487(n)) = A322375(n). - David A. Corneth, Jan 12 2019
From Robert Israel, Jan 17 2019: (Start)
If x and y are coprime, a(x*y) = a(x)*A000005(y) + A000005(x)*a(y) + A000005(x*y)*A001222(x)*A001222(y).
If p is prime, a(p^k) = (k^3-k)/6 = A000292(k-1). (End)

A112965 a(n) = Sum_{i+j=n} omega(i)*omega(j), where omega = A001221.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 7, 8, 9, 10, 14, 14, 17, 18, 23, 24, 27, 26, 32, 32, 35, 36, 44, 42, 47, 48, 52, 50, 58, 54, 65, 62, 67, 66, 78, 70, 79, 78, 88, 84, 94, 88, 100, 100, 103, 100, 118, 106, 119, 114, 124, 116, 135, 122, 138, 134, 141, 136, 155, 142, 155, 154, 163, 156
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimeNu[i]*PrimeNu[n - i], {i, n - 1}], {n, 65}] (* Ivan Neretin, Jan 21 2017 *)
  • PARI
    a(n) = sum(i=2, n-2, omega(i)*omega(n-i)); \\ Michel Marcus, Jan 22 2017

Formula

G.f.: (Sum_{k>=1} x^prime(k)/(1 - x^prime(k)))^2. - Ilya Gutkovskiy, Jan 31 2017

A300672 Expansion of 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k))).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 10, 23, 32, 64, 98, 187, 296, 543, 891, 1595, 2660, 4694, 7924, 13854, 23556, 40940, 69939, 121122, 207490, 358517, 615292, 1061635, 1824013, 3144404, 5406257, 9314645, 16021922, 27595176, 47478950, 81757104, 140691461, 242232918, 416890645, 717712748, 1235289624
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001222.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[bigomega](i), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 41; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[1/(1 - Sum[PrimeOmega[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeOmega[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 41}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001222(k)*x^k).
Showing 1-4 of 4 results.