cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113300 Sum of even-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 3, 10, 34, 115, 389, 1316, 4452, 15061, 50951, 172366, 583110, 1972647, 6673417, 22576008, 76374088, 258371689, 874065163, 2956941266, 10003260650, 33840788379, 114482567053, 387291750188, 1310198605996, 4432370135229, 14994600761871, 50726371026838
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

Partial sums of A099463. a(n+1) gives row sums of Riordan array (1/(1-x)^2,(1+x)^2/(1-x)^2). Congruent to 0,1,1,0,0,1,1,0,0,... modulo 2. - Paul Barry, Feb 07 2006

Crossrefs

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..61]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,0,1},60],{1,-1,2}]] (* Harvey P. Dale, Nov 06 2011 *)
    LinearRecurrence[{3,1,1},{0,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
    a[ n_] := Sum[ SeriesCoefficient[ SeriesCoefficient[ x / (1 - x - y - x y) , {x, 0, n - k}]^2 , {y, 0, k}], {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • Sage
    @CachedFunction
    def T(n): # T(n) = A000073(n)
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def a(n): return sum( T(2*j) for j in (0..n) )
    [a(n) for n in (0..60)] # G. C. Greubel, Nov 19 2021

Formula

a(n) = Sum_{i=0..n} A000073(2*n).
a(n) = Sum_{i=0..n} A099463(n).
a(n) + A113301(n) = A008937(n).
From Paul Barry, Feb 07 2006: (Start)
G.f.: x/(1 - 3*x - x^2 - x^3).
a(n) = 3*a(n-1) + a(n-2) + a(n-3). (End)