A113300 Sum of even-indexed terms of tribonacci numbers.
0, 1, 3, 10, 34, 115, 389, 1316, 4452, 15061, 50951, 172366, 583110, 1972647, 6673417, 22576008, 76374088, 258371689, 874065163, 2956941266, 10003260650, 33840788379, 114482567053, 387291750188, 1310198605996, 4432370135229, 14994600761871, 50726371026838
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,1).
Programs
-
Magma
I:=[0,1,3]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..61]]; // G. C. Greubel, Nov 19 2021
-
Mathematica
Accumulate[Take[LinearRecurrence[{1,1,1},{0,0,1},60],{1,-1,2}]] (* Harvey P. Dale, Nov 06 2011 *) LinearRecurrence[{3,1,1},{0,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *) a[ n_] := Sum[ SeriesCoefficient[ SeriesCoefficient[ x / (1 - x - y - x y) , {x, 0, n - k}]^2 , {y, 0, k}], {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
-
Sage
@CachedFunction def T(n): # T(n) = A000073(n) if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def a(n): return sum( T(2*j) for j in (0..n) ) [a(n) for n in (0..60)] # G. C. Greubel, Nov 19 2021
Formula
a(n) = Sum_{i=0..n} A000073(2*n).
a(n) = Sum_{i=0..n} A099463(n).
From Paul Barry, Feb 07 2006: (Start)
G.f.: x/(1 - 3*x - x^2 - x^3).
a(n) = 3*a(n-1) + a(n-2) + a(n-3). (End)
Comments