cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113337 Number of noncrossing partitions of [n] with all blocks of odd size and 1 and n in the same block.

Original entry on oeis.org

0, 1, 0, 1, 2, 4, 10, 26, 68, 183, 504, 1408, 3982, 11386, 32856, 95551, 279778, 824124, 2440440, 7260888, 21694352, 65066660, 195825872, 591217344, 1790081702, 5434311914, 16537576560, 50439949711, 154163497958, 472094359708, 1448302047274
Offset: 0

Views

Author

Louis Shapiro, Jan 07 2006

Keywords

Comments

If we only require blocks of odd size we get A101785. If G is the o.g.f. for A101785 then the o.g.f. for this sequence is (G-1)/(x*G). [corrected by David Callan, Nov 14 2021]
For n>=1, a(n) is the number of Dyck paths of semilength n-1 in which the last descent is of even length and all other descents are of odd length. For example, a(1) = 1 counts the empty path and a(5) = 4 counts UUUUDDDD, UUDUDUDD, UDUUDUDD, UDUDUUDD. - David Callan, Nov 14 2021

Examples

			a(4)=4 with the 4 partitions being 125/3/4, 135/2/4, 145/2/3 and 12345.
		

Crossrefs

Cf. A101785.

Programs

  • Magma
    [0,1,0] cat [(&+[2^(n-3*j)*Binomial(n-2,j-1)*Binomial(n-2*j-1, j-1)/j: j in [1..Floor(n/3)]]): n in [3..30]]; // G. C. Greubel, Apr 03 2019
    
  • Mathematica
    Table[(-1)^n * Sum[((-1)^k*Binomial[n + k - 2, k - 1] * Binomial[2*n - 1, n - k] * Sum[Binomial[k, m] * (-1)^m * Sum[Binomial[n - j, -2*m + k + j - 1] * Binomial[n + 2*m - k - 2*j + 1, k - 1], {j, 2*m - k + 1, n}], {m, 0, n/2}])/k, {k, 1, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2016, after Vladimir Kruchinin *)
    Join[{0, 1}, Table[Sum[2^(n-3*j)*Binomial[n-2, j-1]*Binomial[n-2*j-1, j- 1]/j, {j,1,Floor[n/3]}], {n,2,30}]] (* G. C. Greubel, Apr 03 2019 *)
  • Maxima
    a(n):=(-1)^n*sum(((-1)^k*binomial(n+k-2,k-1)*binomial(2*n-1,n-k)*sum(binomial(k,m)*(-1)^m*sum(binomial(n-j,-2*m+k+j-1)*binomial(n+2*m-k-2*j+1,k-1),j,2*m-k+1,n),m,0,n/2))/k,k,1,n); /* Vladimir Kruchinin, Sep 08 2016 */
    
  • Maxima
    a(n):=if n=1 then 1 else sum(2^(n-3*j)*binomial(n-2,j-1)*binomial(n-2*j-1,j-1)/j,j,1,floor((n)/3)); /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    a(n) = (-1)^n*sum(k=1, n, (-1)^k*binomial(n+k-2,k-1)*binomial(2*n-1,n-k)*sum(m=0,n/2, binomial(k,m)*(-1)^m*sum(j=2*m-k+1,n,(binomial(n-j,-2*m+k+j-1)*binomial(n+2*m-k-2*j+1,k-1))))/k); \\ Michel Marcus, Sep 08 2016
    
  • Sage
    [0,1]+[sum(2^(n-3*j)*binomial(n-2,j-1)*binomial(n-2*j-1,j-1)/j for j in (1..floor(n/3))) for n in (2..30)] # G. C. Greubel, Apr 03 2019

Formula

a(n) = (-1)^n*Sum_{k=1..n} (((-1)^k*binomial(n+k-2,k-1)*binomial(2*n-1,n-k)*Sum_{m=0..n/2} (binomial(k,m)*(-1)^m*Sum_{j=2*m-k+1..n} (binomial(n-j,-2*m+k+j-1)*binomial(n+2*m-k-2*j+1,k-1))))/k). - Vladimir Kruchinin, Sep 08 2016
From Vaclav Kotesovec, Sep 08 2016: (Start)
Recurrence: 4*(n-1)*n*(91*n^2 - 543*n + 788)*a(n) = 6*(n-1)*(182*n^3 - 1359*n^2 + 3228*n - 2432)*a(n-1) - 4*(91*n^4 - 907*n^3 + 3119*n^2 - 4259*n + 1776)*a(n-2) + 12*(n-4)*(182*n^3 - 1359*n^2 + 3189*n - 2332)*a(n-3) - 5*(n-5)*(n-4)*(91*n^2 - 361*n + 336)*a(n-4).
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 3.2287049510945017293478492558... is the real root of the equation 5 - 24*d + 4*d^2 - 12*d^3 + 4*d^4 = 0 and c = 0.22436685378343740500658458471908821... is the positive real root of the equation -1 + 32*c^2 - 264*c^4 + 364*c^6 + 1820*c^8 = 0.
(End)
a(n) = Sum_{j=1..floor(n/3)} 2^(n-3*j)*C(n-2,j-1)*C(n-2*j-1,j-1)/j, a(1)=1. - Vladimir Kruchinin, Apr 04 2019