cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A124057 Numbers n such that n, n+1, n+2 and n+3 are products of exactly 3 primes.

Original entry on oeis.org

602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9188, 9482, 10011
Offset: 1

Views

Author

Jonathan Vos Post, Nov 03 2006

Keywords

Comments

n such that n, n+1, n+2 and n+3 are 3-almost primes. Subset of A113789 Numbers n such that n, n+1 and n+2 are products of exactly 3 primes. A067813 has some runs of up to 7 consecutive 3-almost primes (i.e. starting 211673). But there cannot be 8 consecutive 3-almost primes, as every run of 8 consecutive positive integers contains exactly one multiple of 8 = 2^3 and only 8 of all positive multiples of 8 is a 3-almost prime (i.e. all larger multiples have at least 4 prime factors, with multiplicity).
A subset of A045940. - Zak Seidov, Nov 05 2006

Examples

			a(1) = 602 because 602 = 2 * 7 * 43 and 603 = 3^2 * 67 and 604 = 2^2 * 151 and 605 = 5 * 11^2 are all 3-almost primes.
a(2) = 603 because 603 = 3^2 * 67 and 604 = 2^2 * 151 and 605 = 5 * 11^2 and 606 = 2 * 3 * 101 are all 3-almost primes.
a(3) = 1083 because 1083 = 3 * 19^2 and 1084 = 2^2 * 271 and 1085 = 5 * 7 * 31 and 1086 = 2 * 3 * 181 are all 3-almost primes.
a(4) = 2012 because 2012 = 2^2 * 503, 2013 = 3 * 11 * 61, 2014 = 2 * 19 * 53, 2015 = 5 * 13 * 31.
a(5) = 2091 because 2091 = 3 * 17 * 41, 2092 = 2^2 * 523, 2093 = 7 * 13 * 23, 2094 = 2 * 3 * 349.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 then n else fi end: seq(a(n),n=1..15000); # Emeric Deutsch, Nov 07 2006
  • Mathematica
    okQ[{a_,b_,c_,d_}]:=Union[{a,b,c,d}]=={3}; Flatten[Position[Partition[ PrimeOmega[ Range[11000]],4,1],?(okQ)]] (* _Harvey P. Dale, Sep 23 2012 *)
  • PARI
    is(n)=if(!isprime((n+3)\4), return(0)); for(k=n,n+3, if(bigomega(k)!=3, return(0))); 1 \\ Charles R Greathouse IV, Feb 05 2017
    
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\4, forprime(q=2,min(lim\(2*p),p), t=p*q; forprime(r=2,min(lim\t,q), listput(u,t*r)))); u=Set(u); for(i=4,#u, if(u[i]-u[i-3]==3, listput(v,u[i-3]))); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017

Formula

n, n+1, n+2 and n+3 are all elements of A014612. n and n+1 are elements of A113789.

Extensions

More terms from Zak Seidov, Nov 05 2006
More terms from Emeric Deutsch, Nov 07 2006

A115402 Difference between 3-almostprime(n) and 3-almostprime(n+3).

Original entry on oeis.org

12, 15, 10, 10, 15, 16, 15, 8, 8, 18, 16, 16, 7, 9, 8, 8, 17, 22, 21, 10, 7, 11, 12, 11, 7, 10, 9, 13, 14, 22, 18, 15, 7, 16, 12, 16, 7, 7, 4, 4, 10, 12, 13, 8, 9, 19, 22, 27, 23, 19, 14, 8, 11, 8
Offset: 1

Views

Author

Jonathan Vos Post, Jan 22 2006

Keywords

Examples

			a(1) = A014612(1+3) - A014612(1) = 20 - 8 = 12.
a(2) = A014612(2+3) - A014612(2) = 27 - 12 = 15.
a(3) = A014612(3+3) - A014612(3) = 28 - 18 = 10.
a(39) = A014612(39+3) - A014612(39) = 174 - 170 = 4.
		

Crossrefs

Programs

  • Mathematica
    Last[#]-First[#]&/@Partition[Select[Range[300],PrimeOmega[#]==3&],4,1] (* Harvey P. Dale, Nov 09 2012 *)

Formula

a(n) = A014612(n+3) - A014612(n).

A268588 Numbers n such that n, n + 1, n + 2, n + 3 and n + 4 are products of exactly three primes.

Original entry on oeis.org

602, 2522, 2523, 4202, 4921, 4922, 5034, 5282, 7730, 18241, 18242, 18571, 19129, 21931, 23161, 23305, 25203, 25553, 25554, 27290, 27291, 29233, 30354, 30793, 32035, 33843, 34561, 35714, 36001, 36835, 40313, 40314, 40394, 45265, 55361, 67609, 69667, 70202, 72721
Offset: 1

Views

Author

K. D. Bajpai, Feb 07 2016

Keywords

Comments

Subsequence of A045941. - Zak Seidov, Jan 29 2017

Examples

			a(1) = 602: 602 = 2 * 7 * 43; 603 = 3 * 3 * 67; 604 = 2 * 2 * 151; 605 = 5 * 11 * 11; 606 = 2 * 3 * 101 are all products of three primes.
a(4) = 4202 : 4202 = 2 * 11 * 191; 4203 = 3 * 3 * 467; 4204 = 2 * 2 * 1051; 4205 = 5 * 29 * 29; 4206 = 2 * 3 * 701 are all products of three primes.
		

Crossrefs

Programs

  • Magma
    IsP3:=func< n | &+[k[2]: k in Factorization(n)] eq 3 >; [ n: n in [2..50000] | IsP3(n) and IsP3(n+1) and IsP3(n+2) and IsP3(n+3) and IsP3(n+4)];
  • Maple
    with(numtheory): A268588:= proc() if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 and bigomega(n+4)=3 then RETURN (n); fi; end: seq(A268588(), n=1..100000);
  • Mathematica
    Select[Range[100000], PrimeOmega[#] == 3 && PrimeOmega[# + 1] == 3 && PrimeOmega[# + 2] == 3 && PrimeOmega[# + 3] == 3 && PrimeOmega[# + 4] == 3 &]
    SequencePosition[PrimeOmega[Range[73000]],{3,3,3,3,3}][[All,1]] (* Harvey P. Dale, Sep 03 2021 *)
  • PARI
    for(n = 1,50000, bigomega(n)==3 & bigomega(n+1)==3 & bigomega(n+2)==3 & bigomega(n+3)==3 & bigomega(n+4)==3 & print1(n,","))
    

Extensions

Comment removed by Zak Seidov, Jan 29 2017

A375239 Numbers k such that k, k+1, ..., k+5 all have 3 prime factors (counted with multiplicity).

Original entry on oeis.org

2522, 4921, 18241, 25553, 27290, 40313, 90834, 95513, 98282, 98705, 117002, 120962, 136073, 136865, 148682, 153794, 181441, 181554, 185825, 211673, 211674, 212401, 215034, 216361, 231002, 231665, 234641, 236041, 236634, 266282, 281402, 285410, 298433, 298434, 330473, 331985, 346505, 381353
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Aug 06 2024

Keywords

Comments

First differs from A045942 at position 20, where a(20) = 211673 but A045942(20) = 204323.
All terms == 1 or 2 (mod 8).
One of the numbers k, k+1, ..., k+5 is a Zumkeller number (A083207), since it is of the form 2*3*p, where p is prime > 3. - Ivan N. Ianakiev, Aug 08 2024

Examples

			a(3) = 18241 is a term because
  18241 = 17 * 29 * 37
  18242 =  2 * 7 * 1303
  18243 =  3^2 * 2027
  18244 =  2^2 * 4561
  18245 =  5 * 41 * 89
  18246 =  2 * 3 * 3041
are all products of 3 primes (counted with multiplicity).
		

Crossrefs

Subsequence of A045942 and of A113789. Contains A259756.

Programs

  • Maple
    R:= NULL: count:= 0: p:= 1:
    while count < 100 do
      p:= nextprime(p);
      x:= 4*p;
      if andmap(t -> numtheory:-bigomega(t)=3, [x-2,x-1,x+1,x+2]) then
        if numtheory:-bigomega(x-3) = 3 then R:= R, x-3; count:= count+1;  fi;
        if numtheory:-bigomega(x+3) = 3 then R:= R, x-2; count:= count+1;  fi;
      fi;
    od:
    R;
  • Mathematica
    s = {}; Do[If[{3, 3, 3, 3, 3, 3} == PrimeOmega[Range[k, k + 5]],
    AppendTo[s, k]], {k, 1000000}]; s

A110934 Difference between 3-almostprime(n) and 3-almostprime(n+2).

Original entry on oeis.org

10, 8, 9, 8, 3, 14, 14, 3, 6, 7, 13, 14, 5, 4, 7, 6, 3, 16, 20, 7, 4, 6, 8, 9, 6, 3, 8, 8, 6, 13, 17, 10, 6, 6, 11, 11, 6, 6, 2, 3, 3, 8, 11, 6, 4, 7, 17, 17, 15, 18, 9, 6, 7, 6, 6, 3, 2, 10, 12, 6, 8, 7, 7, 7, 6, 7, 5, 3, 2, 5, 6, 20, 24, 8, 6, 7, 10, 8, 6, 10, 7
Offset: 1

Views

Author

Jonathan Vos Post, Jan 21 2006

Keywords

Comments

This is the 3-almost prime analog of what A113784 is for semiprimes and what A031131 is for primes. The minimum values in the sequence are 2 because we have, for example, the 3 consecutive 3-almost primes 170, 171, 172, so a(39) = A014612(41) - A014612(39) = 172 - 170 = 2. Equivalently, there are 2 consecutive 1 values of A114403 (3-almost prime gaps; first differences of A014612). This happens for elements of A113789 (numbers n such that n, n+1 and n+2 are 3-almost primes).

Examples

			a(1) = 10 because the difference between the first and third 3-almost primes is A014612(3) - A014612(1) = 18 - 8 = 10.
a(2) = A014612(4) - A014612(2) = 20 - 12 = 8.
a(3) = A014612(5) - A014612(3) = 27 - 18 = 9.
		

Crossrefs

Formula

a(n) = A014612(n+2) - A014612(n).

Extensions

a(28) corrected by R. J. Mathar, Dec 22 2010

A334583 Numbers m such that m, m + 1 and m + 2 each have exactly eight prime factors, not necessarily distinct.

Original entry on oeis.org

40909374, 71410624, 87278750, 126237375, 152439488, 161590624, 166450624, 209140623, 227929624, 243409374, 267308990, 267639470, 290696768, 291513248, 292088510, 295644734, 307885374, 310314158, 319874750, 321890750, 331690624, 336958622, 343030624, 352749248, 354109374, 356269374, 366681248, 391390623, 401375168, 407590623
Offset: 1

Views

Author

Zak Seidov, May 06 2020

Keywords

Examples

			40909374 = 2 * 3^4 * 11^2 * 2087, 40909375 = 5^5 * 13 * 19 * 53, and 40909376 = 2^6 * 179 * 3571.
		

Crossrefs

Intersection of A045939 and A046310.

Programs

  • PARI
    list(lim)=my(v=List(), k, o); forfactored(n=40909374, lim\1+2, o=bigomega(n); if(o==8, if(k++>2, listput(v, n[1]-2)), k=0)); Vec(v) \\ Charles R Greathouse IV, May 07 2020

Formula

A001222(a(n)+i) = 8 for i in {0,1,2}.
Showing 1-6 of 6 results.