cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120044 The 10^n-th 3-almost prime.

Original entry on oeis.org

8, 45, 412, 3918, 38991, 395085, 4046429, 41657362, 429891626, 4439956573, 45851698382, 473238120286, 4880292241955, 50280826966354
Offset: 0

Views

Author

Robert G. Wilson v, Feb 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@ Sqrt[n/Prime@i]}]; ThreeAlmostPrime[n_] := Block[{e = Floor[Log[2, n]], a, b}, a = 2^e; Do[b = 2^p; While[ThreeAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Do[ Print@ThreeAlmostPrime[10^n], {n, 0, 13}]
    ThreePrime[n_] := Block[{e = Floor[ Log[2, n] +2], a, b}, a = 2^e; Do[b = 2^p; While[ ThreePrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ ThreePrime[n], {n, 0, 13}]

A120045 The (10^n)-th 4-almost prime.

Original entry on oeis.org

16, 88, 693, 5958, 54328, 511725, 4922511, 47997635, 472514554, 4683086217, 46636297326, 466032880556
Offset: 0

Views

Author

Robert G. Wilson v, Feb 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    FourAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}];
    FourAlmostPrime[n_] := Block[{e = Floor[Log[2, n] +3], a, b}, a = 2^e; Do[b = 2^p; While[FourAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Do[ Print@FourAlmostPrime[10^n], {n, 0, 11}]

A120046 The 10^n-th 5-almost prime.

Original entry on oeis.org

32, 176, 1272, 10374, 89896, 810220, 7475818, 70185558, 667561977, 6411296283, 62037096770, 603813941738
Offset: 0

Views

Author

Robert G. Wilson v, Feb 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    FiveAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k*Prime@l)] - l + 1, {i, PrimePi[n^(1/5)]}, {j, i, PrimePi[(n/Prime@i)^(1/4)]}, {k, j, PrimePi[(n/(Prime@i*Prime@j)^(1/3))]}, {l, k, PrimePi@Sqrt[(n/(Prime@i*Prime@j*Prime@k))]}];
    FiveAlmostPrime[n_] := Block[{e = Floor[Log[2, n] +4], a, b}, a = 2^e; Do[b = 2^p; While[FiveAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Do[ Print@FiveAlmostPrime[10^n], {n, 0, 13}]
  • PARI
    lista(nmax) = {my(pow = 1, c = 0, n = 0); for(k = 1, oo, if(bigomega(k) == 5, c++; if(c == pow, print1(k, ", "); if(n == nmax, break); pow *= 10; n++)));} \\ Amiram Eldar, Apr 29 2024

Formula

a(n) = A014614(10^n). - Amiram Eldar, Apr 29 2024

Extensions

a(6) corrected and a(7)-a(9) added by Amiram Eldar, Apr 29 2024
a(10)-a(11) from David A. Corneth, Apr 29 2024

A131867 a(n) is the 2^n-th semiprime.

Original entry on oeis.org

4, 6, 10, 22, 46, 93, 202, 407, 849, 1774, 3693, 7671, 15999, 33146, 68703, 142682, 295003, 610757, 1261573, 2603453, 5369633, 11058907, 22758881, 46796443, 96132103, 197329777, 404737537, 829538129, 1698995201, 3477431507, 7113030933, 14540737711
Offset: 0

Views

Author

M. F. Hasler, Oct 04 2007

Keywords

Comments

The PARI code allows one to resume at the k-th semiprime, e.g., SP(295003,65536) and to change the output interval, e.g., SP(,,10) = A114125, SP(,,-1) = A001358.

Examples

			a(0)=4 is the first semiprime;
a(1)=6 is the 2nd semiprime;
a(16)=295003 is the 65536th semiprime.
		

Crossrefs

Cf. A001358 (semiprimes), A114125.

Programs

  • PARI
    SP( n=0 /*tested number*/,c=0 /*count of semiprimes*/, step=2)={ local( l=c+!c ); /* negative/positive step means arithmetic/geometric progression of output threshold l */ until( 0, until(l<=c++,until(bigomega(n+=1)==2,));print1(/*c ":" */ n ", "); if(step>0,l*=step,l-=step))}
    
  • Perl
    use ntheory ":all"; my($i,$g)=(0,0); forsemiprimes { print $g++," $\n" if ++$i == 1<<$g; } 10**8; # _Dana Jacobsen, Sep 10 2018
    
  • Perl
    use ntheory ":all"; print "$ ",nth_semiprime(1<<$),"\n" for 0..40; # Dana Jacobsen, Oct 08 2018

Formula

a(n) = A001358(2^n).

Extensions

a(23)-a(28) from Donovan Johnson, Nov 11 2008
a(29)-a(33) from Max Alekseyev, May 07 2010

A117324 Prime(10^n) modulo semiprime(10^n).

Original entry on oeis.org

2, 3, 227, 729, 22965, 380555, 156346, 10920166, 202913258, 2973399074, 39284376410, 489544827463, 5874954672992
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Examples

			prime(10^0) modulo semiprime(10^0) = 2 mod 4 = 2.
prime(10^1) modulo semiprime(10^1) = 29 mod 26 = 3.
prime(10^2) modulo semiprime(10^2) = 541 mod 314 = 227.
		

Formula

a(n) = A000040(10^n) modulo A001358(10^n). a(n) = A117322(10^n). a(n) = A006988(n) modulo A114125(n).

Extensions

a(12) from Zak Seidov
Showing 1-5 of 5 results.