A023532 a(n) = 0 if n is of the form m*(m+3)/2, otherwise 1.
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
From _Boris Putievskiy_, Jan 11 2013: (Start) As a triangular array written by rows, the sequence begins: 0; 1, 0; 1, 1, 0; 1, 1, 1, 0; 1, 1, 1, 1, 0; 1, 1, 1, 1, 1, 0; 1, 1, 1, 1, 1, 1, 0; ... (End)
References
- Harold M. Stark, An Introduction to Number Theory, The MIT Press, Cambridge, Mass, eighth printing 1994, page 170.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Elise Vaslet, Critical exponents of words over 3 letters, Electronic Journal of Combinatorics, 18 (2011), #P125.
- Index entries for characteristic functions
Crossrefs
Programs
-
Haskell
a023532 = (1 -) . a010052 . (+ 9) . (* 8) a023532_list = concat $ iterate (\rs -> 1 : rs) [0] -- Reinhard Zumkeller, Dec 04 2012
-
Maple
A023532 := proc(n) option remember ; local m,t ; for m from 0 do t := m*(m+3)/2 ; if t > n then return 1 ; elif t = n then return 0 ; end if; end do: end proc: seq(A023532(n),n=0..40) ; # R. J. Mathar, May 15 2025
-
Mathematica
a = {}; Do[a = Append[a, Join[ {0}, Table[1, {n} ] ] ], {n, 1, 13} ]; a = Flatten[a] Table[PadLeft[{0},n,1],{n,0,20}]//Flatten (* Harvey P. Dale, Jul 10 2019 *)
-
PARI
for(n=1,9,print1("0, ");for(i=1,n,print1("1, "))) \\ Charles R Greathouse IV, Jun 16 2011
-
PARI
a(n)=!issquare(8*n+9) \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from sympy.ntheory.primetest import is_square def A023532(n): return bool(is_square((n<<3)+9))^1 # Chai Wah Wu, Feb 10 2023
Formula
a(n) = 0 if and only if 8n+9 is a square. - Charles R Greathouse IV, Jun 16 2011
Blocks of lengths 1, 2, 3, 4, ... of ones separated by a single zero.
a(n) = 1 - floor((sqrt(9+8n)-1)/2) + floor((sqrt(1+8n)-1)/2). - Paul Barry, May 25 2004
a(n) = A211666(m), where m = (t^2 + 3*t + 4)/2n - n, t = floor((-1 + sqrt(8*n-7))/2). - Boris Putievskiy, Jan 11 2013
a(n) = 1-A023531(n). - R. J. Mathar, May 15 2025
Extensions
Additional comments from Robert G. Wilson v, Nov 06 2000
Comments