A114823 Indices of Fibonacci numbers with 13 distinct prime factors.
120, 200, 220, 228, 260, 368, 392, 405, 414, 434, 472, 492, 512, 536, 584, 585, 595, 610, 615, 618, 645, 654, 693, 741, 762, 777, 830, 867, 894, 904, 931, 942, 957, 962, 978, 1045, 1066, 1070, 1074, 1102, 1106, 1108, 1147, 1194, 1209, 1266, 1268, 1309, 1310, 1317
Offset: 1
Examples
a(1)=120 because the 120th Fibonacci number consists of 13 distinct prime factors (i.e., 5358359254990966640871840 = 2^5 * 3^2 * 5 * 7 * 11 * 23 * 31 * 41 * 61 * 241 * 2161 * 2521 * 20641).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..54
- Blair Kelly, Fibonacci and Lucas Factorizations.
Programs
-
Magma
[n: n in [1..3*10^2] |(#(PrimeDivisors(Fibonacci(n)))) eq 13]; // Vincenzo Librandi, Aug 05 2015
-
Maple
select(t -> nops(numtheory:-factorset(combinat:-fibonacci(t)))=13, [$1..1000]); # Robert Israel, Aug 10 2015
-
Mathematica
Select[Range[1250], PrimeNu[Fibonacci[#]]==13&] (* Harvey P. Dale, Apr 30 2015 *)
-
PARI
n=1;while(n<265,if(omega(fibonacci(n))==13,print1(n,", "));n++)
-
SageMath
for n in range(1,3*10^2): if len(prime_factors(fibonacci(n)))==13: print(n) # Manfred Scheucher, Aug 04 2015
Extensions
More terms from Ryan Propper, Apr 26 2006
a(36)-a(45) from Max Alekseyev, Aug 18 2013
a(46)-a(50) from Amiram Eldar, Oct 14 2019
Comments