A114973
Numbers n such that 5^n + n^5 is a semiprime.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 84, 288, 628
Offset: 1
2 is OK because 5^2 + 2^5 = 25 + 32 = 57 = 3*19 (semiprime).
-
IsSemiprime:=func< n|&+[k[2]: k in Factorization(n)] eq 2 >; [n: n in [1..85]|IsSemiprime(5^n+n^5)]; // Vincenzo Librandi, Dec 16 2010
-
Select[Range[100],PrimeOmega[5^# + #^5]==2&] (* Vincenzo Librandi, May 21 2014 *)
A114974
Numbers n such that 7^n + n^7 is a semiprime.
Original entry on oeis.org
2, 12, 16, 18, 30, 39, 160, 214, 235, 408
Offset: 1
2 is in the sequence because 7^2 + 2^7 = 177 = 3*59 (semiprime).
12 is in the sequence because 7^12 + 12^7 = 13*1067470693 (semiprime). [_Vincenzo Librandi_, Dec 16 2010]
A114971
Numbers n such that 3^n + n^3 is a semiprime.
Original entry on oeis.org
1, 4, 8, 14, 16, 22, 23, 32, 34, 50, 52, 62, 80, 154, 170, 176, 202, 208, 214, 236, 248, 332, 398, 422
Offset: 1
4 is OK because 3^4 + 4^3 = 81 + 64 = 145 = 5*29 (semiprime).
-
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..95] | IsSemiprime(3^n+n^3)]; // Vincenzo Librandi Dec 16 2010
-
Select[Range[100], PrimeOmega[3^# + #^3]==2&] (* Vincenzo Librandi, May 21 2014 *)
Showing 1-3 of 3 results.
Comments